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Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil

and also within plant cells where they fix nitrogen for legume hosts. Host

control models posit that legume hosts act as a predominant selective

force on rhizobia, but few studies have examined rhizobial fitness in natural

populations. Here, we genotyped and phenotyped Bradyrhizobium isolates

across more than 800 km of the native Acmispon strigosus host range. We

sequenced chromosomal genes expressed under free-living conditions and

accessory symbiosis loci expressed in planta and encoded on an integrated

‘symbiosis island’ (SI). We uncovered a massive clonal expansion restricted

to the Bradyrhizobium chromosome, with a single chromosomal haplotype

dominating populations, ranging more than 700 km, and acquiring 42 diver-

gent SI haplotypes, none of which were spatially widespread. For focal

genotypes, we quantified utilization of 190 sole-carbon sources relevant to

soil fitness. Chromosomal haplotypes that were both widespread and domi-

nant exhibited superior growth on diverse carbon sources, whereas these

patterns were not mirrored among SI haplotypes. Abundance, spatial

range and catabolic superiority of chromosomal, but not symbiosis geno-

types suggests that fitness in the soil environment, rather than symbiosis

with hosts, might be the key driver of Bradyrhizobium dominance.
1. Introduction
Proteobacteria in the genus Bradyrhizobium are among the most cosmopolitan

bacteria, thriving in multifarious free-living habitats and associating with

diverse hosts [1–3]. Like other rhizobia, Bradyrhizobium spp. often exhibit a

bipartite life cycle, alternating between free-living replication in the soil and

symbiotic differentiation and N2 fixation within the root nodules of legume

hosts [4]. Bradyrhizobium and other rhizobia also exhibit bipartite genomes,

with chromosomal loci largely expressed under aerobic free-living conditions,

and symbiosis loci mainly expressed in planta [5,6]. Rhizobial symbiosis loci

are grouped on megaplasmids or genomic islands that are transmitted horizon-

tally between chromosomal backgrounds [7–10]. A key characteristic of both

agricultural and natural rhizobial populations is that they are often overrepre-

sented by one or few rhizobial genotypes [4,11,12], in some cases with

evidence that a subset of genotypes have rapidly increased in frequency (i.e.

selective sweeps [13]). Yet, relatively little is known about what factors might

drive such variation in rhizobial genotypic frequencies.

The longstanding ‘host control’ paradigm of symbiosis predicts that hosts

are a dominant selective force shaping populations of associated symbionts.

Host control models of symbiosis posit that hosts must exhibit mechanisms

to constrain exploitation in their associated symbionts, for instance via discrimi-

nation among symbionts during initial host colonization or via within host

control over symbiont proliferation [14–17]. Consistent with these models,
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legume hosts have been shown to select certain rhizobial

genotypes over others for nodulation [18,19] and favour ben-

eficial rhizobia over less-effective strains in planta [20–23].

However, ex planta selection on rhizobia has remained

poorly understood [4,24]. In particular, repeated attempts to

leverage legume host control traits to use rhizobia as agricul-

tural bioinoculants have revealed the so-called ‘rhizobial

competition problem’, where highly beneficial introduced

strains fail to compete against native strains and thus are

unable to successfully invade populations [25–27]. The

common failure of crop legumes to enrich soil populations

with beneficial inoculated strains suggest that variation in

rhizobial fitness in the soil might be able to overwhelm the

hosts’ ability to select beneficial strains [25,26,28].

Here, we investigated the population genetic structure of

Bradyrhizobium isolated from a metapopulation of Acmispon
strigosus (formerly Lotus strigosus), a common herb native

to the southwestern USA. Bradyrhizobium thrives in soil and

aquatic environments and colonizes wild legumes and major

staple crops [1,2,4,19,29–32]. We genotyped Bradyrhizobium
from more than 350 A. strigosus nodules from nine natural

sites across California encompassing 72 plants collected over

an 840 km range. Building on past studies focused on chromo-

somal loci [4,12], we sequenced eight loci (approx. 5.5 kb)

distributed across the approximately 9 Mbp Bradyrhizobium
genome including four loci on the chromosome (i.e. CHR)

and four loci within the symbiosis island (i.e. SI), a large

(approx. 680 kB) integrated genomic island that encodes nodu-

lation and nitrogen fixation function [8,33]. To generate

predictions about the relative importance of the soil versus

the plant host in structuring rhizobial populations, we

compared population genetic parameters of CHR and SI

loci and examined rates of recombination across these two

genomic regions. To analyse functional differences among

Bradyrhizobium genotypes that could drive patterns of geno-

type frequency and spatial range, we chose 20 focal strains

and used phenotypic microarrays to analyse utilization of

190 sole-carbon sources that are ecologically relevant to soil

bacteria [34]. We investigated the fit of our dataset to four

hypothetical scenarios of genome evolution, including:

(i) selective sweeps restricted to the SI, predicted if host

plants select for symbiosis loci that recombine among diverse

CHR backgrounds [35]; (ii) selective sweeps restricted to the

CHR, predicted if ex planta conditions select on CHR loci

which acquire diverse SI genotypes; and (iii) whole-genome

selective sweeps, predicted if selection affects both genome

regions without recombination [36]. Finally, a scenario of

stasis and whole-genome linkage is predicted in the absence

of selective sweeps or recombination [37].
2. Material and methods
(a) Collection of nodule isolates
Root nodules were collected from A. strigosus host plants at nine

field collection sites across California covering more than 800 km

of the host’s range, and including collections from previous

studies [4,12]. Previous work showed that these sites vary in

key soil parameters such as total soil nitrogen and mineral nitro-

gen content [21]. From each of the 72 plants collected, we

sampled 1–26 nodules (mean approx. 5/plant). From each

sampled nodule, we isolated a single clone of Bradyrhizobium
following published protocols [4].
(b) DNA amplification and sequencing
Genomic DNA extracts were purified, PCR amplified and

sequenced at four loci located on the Bradyrhizobium chromo-

some (CHR), including dnaK, glnII, ITS and recA, and four SI

loci, including nifD, nodD-A, nodZ and nolL. PCR amplification

followed previously published protocols [4,29,30,38–43].
(c) Phylogenetic analyses
Sequences for each gene were aligned and analysed separately or

were concatenated per genomic region with CLUSTAL OMEGA [44]

including reference sequences from diverse Bradyrhizobium spp.
and Mesorhizobium loti (which were used as outgroups; electronic

supplementary material, S1). We used Akaike information cri-

terion results from JMODELTEST 2 [45,46] to select the GTR

model of nucleotide substitution all loci. Phylogenetic trees

were reconstructed in PHYML v. 3.0 [47] using BIONJ as the start-

ing tree with subtree pruning and regrafting. Branch support was

estimated using the fast approximate likelihood ratio test (aLRT)

with the Shimodaira–Hasegawa-like (SH-like) procedure [48].

Based on the CHR phylogeny, species-like clades of Bradyrhizo-
bium were defined as highly supported, non-nested,

monophyletic groups (SH support greater than or equal to

0.90) including no more than one reference species, attempting

to follow past species demarcations that used some of the same

loci [31,49]. A tanglegram associating phylogenetic trees of

each genomic region was reconstructed in TREEMAP v. 3.0 [50].

Statistical significance of congruence between CHR and SI phylo-

genies was tested using AXPARAFIT and AXPCOORDS [51] within

COPYCAT [52] using default parameters.
(d) Statistical analyses
Loci were analysed separately or grouped into genomic regions,

recognizing the potential for horizontal transfer of the SI

[35,39,53]. We estimated p (nucleotide diversity; [54]), Hd (haplo-

type diversity; [54]), k (average number of nucleotide differences

per site; [55]), Ka/Ks (ratio of non-synonymous to synonymous

substitutions; [56]), average absolute D’ (linkage disequilibrium)

[19,57], R (recombination) [58], minimum number of recombina-

tion events [59] and Tajima’s D [55]. Population differentiation

was calculated using FST conducted on a base-pair basis using

a Perl script and the Weir–Cockerham method [60]. Average FST-

values were calculated between all pairs of collection sites for

each genomic region. Isolation by distance was tested with a

Mantel test [61] correlating FST and distance matrices between

collection sites in PASSaGE [62]. We analysed collection sites

and identified Bradyrhizobium clades separately when appropri-

ate. We analysed inter-clade variation using the ratio of fixed

to shared polymorphisms using DNASP [63].

We identified isolates with identical haplotypes within one

or both genomic regions using the ‘find redundant’ command

in MACCLADE [64]. For each haplotype, we calculated raw abun-

dance (number of times a haplotype was isolated), and an

adjusted abundance (only counting identical haplotypes from

unique GPS locations), which discounts repeated isolation of

the same haplotype from closely neighbouring plants. Distances

within collection sites were small (less than 300 m), thus we used

the geographical midpoint at each collection site to calculate dis-

tance among collection sites. Measures of strain richness and

dominance were estimated, which are akin to species richness

and dominance [65,66]. Strain richness was calculated for each

locus and genomic region by dividing the number of haplotypes

by the number of isolates collected [11].

Within each genomic region, we analysed the number of

times each haplotype was isolated (i.e. abundance; [11]) and

the percentage of isolates each haplotype encompassed (i.e.

strain dominance; [11]). Haplotypes were defined as ‘dominant’
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at a field collection site if they constituted at least 10% of the iso-

lates at that site (only including sites with greater than or equal to

50 isolates) and were defined as ‘epidemic’ if they were dominant

in at least one site and were also found to have spread among

multiple sites separated by at least 10 km. In population genetics,

the term epidemic is used to describe microbial genotypes that

reach extremely high frequency in populations composed

mostly of rare genotypes [67,68].

(e) Carbon source utilization assays
We assayed growth upon 190 sole-carbon sources using phenoty-

pic microarrays (PM1, PM2; Biolog Hayward, CA, USA). Carbon

sources were categorized into amines and amides (n ¼ 11),

amino acids (n ¼ 32), carbohydrates (n ¼ 59), carboxylic acids

(n ¼ 55), polymers (n ¼ 13) and miscellaneous (n ¼ 20, [69]). The

tested strains were incubated on modified arabinose gluconate

(MAG) agar plates (298C, approx. 96 h, approx. four plates per

stain), plates were scraped and cultures individually re-suspended

in liquid MAG [4], cell density was measured optically, cells were

washed twice in sterile phosphate buffered saline buffer, then re-

suspended in Biolog Buffer IF-O (with tetrazolium dye) and

pipeted into phenotypic microarrays in duplicate (approx. 3.0 �
107 cells well21; 100 mm). Microarrays were incubated (298C,

120 h), absorbance was read at 570 nm using a Victor 2 plate

reader, and readings were averaged among strain replicates. We

employed a binary measure of carbon source utilization in which

growth was considered positive with at least twofold absorbance

relative to control wells (no carbon source). We first analysed

these response variables using ANOVAs with strain and haplotype

dominance as fixed effects, and treating strains as independent

samples. We also analysed the response variables using haplotype

(genotypic) means, which is more conservative and avoids

phylogenetic non-independence among resampled haplotypes.

( f ) Testing evolutionary-genomic scenarios
We tested for population genetic data consistent with four

evolutionary-genomic scenarios including selective sweeps

restricted to the SI (SI sweep; e.g. [35]), selective sweeps restricted

to the CHR (CHR sweep), whole-genome selective sweeps

(CHR-SI sweep; e.g. [36]), and stasis and whole-genome linkage

(Stasis; e.g. [37]). Selective sweeps are predicted to result in

reduced genetic diversity in the genome region where they occur

[70,71]. To discriminate among these models, we compared

GC%, p, haplotype number, Hd, strain richness, linkage and

Tajima’s D within and among genomic regions (see the electronic

supplementary material, S2 for detailed predictions).
3. Results
(a) Genomic region evolution
We examined similar numbers of nucleotides and variable

sites in the CHR and SI loci, but nonetheless these genome

regions were characterized by dissimilar population genetic

parameters. The CHR exhibited many fewer haplotypes

(CHR, 138; SI, 225), lower strain richness (CHR, 0.39; SI,

0.63) and haplotype diversity than the SI (CHR, 0.947; SI,

0.993). The CHR also had slightly greater nucleotide diversity

(CHR, 0.03; SI, 0.02) and differed by greater numbers

of nucleotides per site (CHR, 0.030; SI, 0.019; electronic

supplementary material, S3).

We found relatively high linkage among all loci (average

jD’j . 0.9), with the SI exhibiting greater linkage on average

than the CHR (average jD’j ¼ 0.968 versus 0.925). High link-

age values between the genomic regions (average jD’j ¼
0.937), and low estimates of recombination (R ¼ 0.001 per

gene; [58]) suggest that horizontal gene transfer (HGT) of

the SI occurs infrequently (electronic supplementary material,

S3). Nonetheless, the SI loci had reduced GC content com-

pared with the CHR loci (except for ITS which encodes

rDNA), consistent with sequenced Bradyrhizobium genomes

USDA6 and USDA110 [8,33] and indicative of the SI’s history

of horizontal transfer (CHR, approx. 59% GC; SI, 55% GC;

electronic supplementary material, S3). The ratio of non-

synonymous to synonymous substitutions was low and

varied little among loci (approx. 0.1–0.3), hence that most

differentiation occurred via synonymous changes in the

sequenced loci (electronic supplementary material, S3).

(b) Phylogenetic reconstruction
The CHR and SI trees exhibited contradistinctive topologies.

Reconstruction of the CHR tree recovered six species-like

clades (i.e. monophyletic; SH-like branch support more than

0.9; less than or equal to one reference species; higher ratio of

fixed differences to shared polymorphisms among species

[12]) including four previously defined species, Bradyrhizobium
japonicum, Bradyrhizobium canariense, Bradyrhizobium retamae
and Bradyrhizobium yuanmingense, and two unnamed clades,

Bradyrhizobium sp. nov. I and Bradyrhizobium sp. nov. II

(figure 1; electronic supplementary material, S4; [12]). Two iso-

lates, 12LoS3_5 and 12LoS6_1 did not fit in any of the recovered

clades. Collection sites varied substantially in relative frequen-

cies of CHR clades (electronic supplementary material, S1).

Most population genetic parameters were similar among the

different CHR clades (electronic supplementary material, S5).

Reconstruction of the SI tree recovered a single deep

clade that encompassed all sequenced isolates as well as the

reference strains Bradyrhizobium sp. WM9, B. canariense
SEMIA928 and Bradyrhizobium cytisi LMG25866 (electronic

supplementary material, S6). We compared topologies of

the CHR and SI trees. A tanglegram analysis suggested a

broad pattern of shared evolutionary history among the

major CHR clades and four paraphyletic SI lineages (denoted

SI lineages numbers 1–4; electronic supplementary material,

S7). The CHR clades B. canariense, B. sp. nov. I and B. retamae
were associated with SI lineages no. 4, no. 3, no. 1, respect-

ively, and the paraphyletic CHR taxa B. japonicum and B.
sp. nov. II was associated with SI lineage no. 2. At least

seven independent HGT events are also evident among

these defined lineages. We did not find significant support

for congruence of the CHR and SI trees when we used the

programs AXPARAFIT and AXPCOORDS within COPYCAT

(PARAFITGLOBAL ¼ 0.11097; p ¼ 0.53), but this test is sensitive

to poor phylogenetic resolution near branch tips [51,52].

(c) Spatial analysis of haplotypes
Most whole-genome haplotypes (i.e. all eight loci) were

unique (86%), and only five were dominant at any

single field site, comprising up to 14% of local isolates. No

whole-genome haplotypes were found at multiple sites.

Ten of the 138 CHR haplotypes were categorized as domi-

nant. Two CHR haplotypes were found at multiple sites

greater than or equal to 10 km distant, and thus categorized

as epidemic (figure 2; electronic supplementary material,

S8). Among the 225 SI haplotypes, seven were categorized

as dominant within a site, and none were found at multiple

sites (electronic supplementary material, S8). The dominant
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SI haplotypes were always found to be paired with dominant

CHR haplotypes.

The CHR haplotype K01_G03_I01_R01 was found at all

six collection sites that are not in desert habitat (a spatial

range of 728.3 km) and was dominant at five of them. This

haplotype encompassed greater than 17% of all isolates

assayed, consistent with a massive clonal expansion of the

CHR [11,40,68] (figure 1; electronic supplementary material,

S2). A broad diversity of SI haplotypes were associated

with K01_G03_I01_R01 (42 SI haplotypes, encompassing 61

nucleotide changes), revealing that the epidemic CHR haplo-

type acquired divergent SI haplotypes as it spread (figure 3).
(d) Genetic differentiation among sites
The major CHR clades varied widely in geographical range.

Bradyrhizobium canariense, which encompassed both epidemic

haplotypes, had the largest range and was the only clade to

be found in northern California (B. canariense range approx.

700 km; B. retamae, B. sp. nov. I approx. 150 km; B. sp. nov.

II, B. japonicum less than 10 km; electronic supplementary

material, S4). Clade diversity varied among sites and was

greatest at San Dimas Canyon, which contained all sampled

Bradyrhizobium clades and was the only site with B. yuanmin-
gense. Three sites each only contained a single clade (Bodega

Marine Reserve, Motte Rimrock Reserve, Anza Borrego
Desert State Park—Roadside). Nucleotide and haplotype

diversity roughly paralleled clade diversity among sampling

sites in both the CHR and SI datasets (electronic supplemen-

tary material, S9). Differentiation among populations was

lower for the SI than the CHR (mean FST ¼ 0.08 and 0.20,

respectively; electronic supplementary material, S9). Mean

FST values for the SI varied little among populations (0.06–

0.13). By contrast, two populations exhibited FST for the

CHR loci that were well beyond this range (Anza Borrego

Palm Canyon, mean FST ¼ 0.25; Burns Piñon Ridge, FST ¼

0.83). We did not find support for isolation by distance

within the CHR or SI datasets (CHR; Mantel test

R ¼ 20.00145; p ¼ 0.99; SI, R ¼ 0.09132; p¼ 0.72).
(e) Carbon source utilization
Twenty genetically diverse isolates were analysed for carbon

utilization. Isolates were initially treated as independent data

and binned based on haplotype abundance for each genome

region. CHR haplotypes were classified as epidemic (n ¼ 5)

or not (n ¼ 15) and SI haplotypes (none of which are epi-

demic) were classified as ‘frequent’ (sampled greater than

or equal to 2x; n ¼ 5) or unique (n ¼ 15; electronic sup-

plementary material, S10). Binary utilization scores were

significantly higher for strains with epidemic CHR haplo-

types (48.6+ 8.8) than rare CHR haplotypes (26.1+5.1;

http://rspb.royalsocietypublishing.org/
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ANOVA; F1,19 ¼ 4.87, p ¼ 0.04), and these higher utilization

scores were most pronounced on carbohydrates (F1,19 ¼

7.50, p ¼ 0.013) and carboxylic acids (F1,19 ¼ 5.16, p ¼
0.036). Strains with frequent and rare SI haplotypes did not

differ in binary utilization (frequent: 30.8+9.3; rare: 32.1+
5.7; ANOVA; F1,19 ¼ 0.01, p ¼ 0.91).

We analysed genotypic means for carbon utilization

scores to take phylogenetic non-independence into account.

These analyses generated similar results as in the categorical

tests. The epidemic CHR haplotypes exhibited binary carbon

utilization scores that were well above 99% confidence limits

for the mean of the population distribution (a ¼ 0.01;

figure 4). The superiority of the epidemic CHR haplotype

was most pronounced on carbohydrates and carboxylic

acids (figure 4; electronic supplementary material, S10).

( f ) Hypothesis testing of evolutionary-genomic
scenarios

We examined the fit of our data to four potential evolutionary-

genomic scenarios and tested models separately for each

well-sampled Bradyrhizobium clade (i.e. minimum of 20 iso-

lates; electronic supplementary material, S4). We had the best
sampling for the B. canariense clade (n ¼ 244), for which the

data support the CHR sweep model (electronic supplementary

material, S2). For the B. nov. I clade, n ¼ 54, the next largest

dataset, the data also support the CHR sweep model, except

Tajima’s D is not negative as would be expected following a

selective sweep. The data for B. japonicum and B. yuanmingense
do not strongly support any of the models, but both have

relatively small sample sizes.
4. Discussion
Rhizobia are often studied in agricultural and pastoral set-

tings where local populations are genetically diverse but

often dominated by few chromosomally encoded genotypes

[11]. A handful of studies in natural populations have

mirrored these results, with chromosomal genotypes domi-

nating local populations [4] or spreading among multiple

locales [2,12,31,32]. However, there has been little under-

standing of what drives these patterns or whether they

reflect whole-genome evolution. Studies of agricultural iso-

lates can be confounded by tilling, flood irrigation,

introduced or genetically altered plants, and biological soil

http://rspb.royalsocietypublishing.org/
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amendments, any of which can transport rhizobia within

and among sites. Moreover, rhizobial datasets often sample

multiple legume host species and differences in host special-

ization can also confound patterns of rhizobial strain

diversity and dominance [72]. We have focused on native

host populations of a single legume species in natural soils

to avoid these confounding effects [4,12].

The Bradyrhizobium populations we examined exhibited

strikingly different population genetic parameters between

the CHR and SI genomic regions. While we sampled similar

numbers of nucleotide sites and variable sites in these two

genome regions (electronic supplementary material, S3), we

found fewer haplotypes, lower haplotype diversity and

lower strain richness within the CHR loci. One hypothesis

to explain these differences is additional pressure of natural

selection on the CHR relative to the SI, which is also

supported by the negative Tajima’s D (found for the

B. canariense clade; electronic supplementary material, S5).

An alternative explanation would be that haplotype diversity

and strain richness are elevated in the SI driven by local

adaptation to host populations; for instance, if the host popu-

lations are genetic structured [19]. The genetics of A. strigosus
are currently unknown, but given that we found similar

levels of population subdivision across both CHR and SI

loci, there is not much support for this latter hypothesis.

Focusing on the CHR dataset, we found that most field

sites had one or a handful of dominant strains that were

unique to that site. Among the two CHR haplotypes that

were categorized as epidemic, one was dominant at the

majority of sampled sites and ranged over a 700 km span to

represent more than 17% of all isolates sampled (CHR haplo-

type, K01_G03_I01_R01; figure 2; electronic supplementary
material, S4 and S8). This striking evidence of CHR clonal

expansion was not mirrored in the SI dataset. Although we

uncovered locally dominant SI haplotypes within 5 out of 9

collection sites, none had spread more than 10 km (not epi-

demic; electronic supplementary material, S8). The fact that

the dominant SI haplotypes were always paired with domi-

nant CHR haplotypes (but not vice versa) suggests that SI

haplotypes only achieved local dominance via hitchhiking

with the CHR.

We considered four potential models of Bradyrhizobium
genome evolution and found the best support for a CHR

sweep within the B. canariense lineage (other lineages were

not as well sampled; electronic supplementary material, S2).

Low nucleotide diversity in the chromosome, indicative of

extensive hitchhiking following a selective sweep, was also

found in Sinorhizobium melliloti [13]. In the case of our dataset,

however, the presence of highly abundant and spatially

widespread haplotypes was strictly limited to the CHR.

Among the 42 SI haplotypes associated with the epidemic

CHR haplotype in our dataset, only one is dominant

(figure 3; electronic supplementary material, S8). Thus, the

most likely explanation is that the epidemic CHR haplotype

increased its spatial range and in the process acquired diver-

gent SI haplotypes. Our data are inconsistent with the

hypothesis of a genome-wide sweep followed by the SI

accumulating variation because we found evidence of faster

molecular evolution in the CHR versus the SI (0.149 versus

0.088 mutations per site, respectively, within the best

sampled B. canariense/SI lineage 4; electronic supplementary

material, S7).

The clonal expansion and geographical dissemination of a

small subset of bacterial genotypes in a population suggests
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that these strains exhibit traits that engender superior fitness in

their population [73–75]. Such clonal expansion events in bac-

terial pathogens are often associated with horizontal transfer of

accessory DNA, for instance where acquisition of antibiotic

resistance traits or vaccine-escape loci can result in epidemic

spread of pathogenic strains [73,74]. Parallel processes are

also possible in bacterial symbionts, with the host possibly pro-

moting rather than countering bacterial spread. In rhizobial

populations, host plants can favour beneficial over ineffective

rhizobial genotypes [20,22,23] and thus select certain symbiosis

alleles over others [18,19,32]. However, only under very

specific conditions has there been evidence of plant selection

promoting selective sweeps of symbiosis genotypes. One strik-

ing example comes from an agricultural site in which the

legume hosts were planted, but were not being nodulated

(e.g. no rhizobia were present with the capacity to form

nodules). A single Mesorhizobium loti strain was inoculated

and its SI genotype spread through a diverse population of

non-symbiotic Mesorhizobium spp [53]. The recurrent acqui-

sition of the SI in diverse non-nodulating Mesorhizobium
strains is consistent with a fitness advantage of symbiotic

versus a non-symbiotic lifestyle. By contrast, we found evi-

dence of a CHR sweep. Our previous data showed that

epidemic status of Bradyrhizobium genotypes occurs both in

the presence and absence of the SI, suggesting that the fitness

advantage encoded by these genotypes is unlinked to the

symbiosis [12].

The rhizobial lineages both Bradyrhizobium and Mesorhizo-
bium exhibit genomes with ‘expression islands’, wherein SI

loci are primarily expressed in nodules and CHR loci are pri-

marily expressed ex planta [5,6]. Our evidence of selective

sweeps restricted to the CHR suggests that selection among

CHR variants in the soil (i.e. outside the context of in planta
symbiosis) might be the driving force structuring these popu-

lations. In further support of this hypothesis, we found that

dominant CHR haplotypes had significantly enriched

capacity to use sole-carbon sources, which can be important

to bacterial fitness in the soil and soil–root interface [76].

However, more research is needed to uncover the portions

of the rhizobial life cycle where selection of catabolism

traits might be occurring. Superior capability to catabolize

carbohydrates and carboxylic acids that we uncovered here

could be favoured as a trait for persistence in the soil, compe-

tition on carbon-rich root surfaces, or even during growth

within nodules that can be rich in these carbon compounds

[24]. Moreover, the role of other hosts remains unknown in

these populations, and the diversity of SI loci of the epidemic

CHR haplotype suggests the possibility that other host

legumes might be contributing to the fitness of these strains.

Harnessing natural rhizobial epidemics, such as we

uncovered here, could represent a solution to the failed

attempts to establish rhizobial inoculants as efficient sym-

bionts of legume crops, known as the rhizobial competition

problem [25,26,28]. The key challenge for inoculant strain

establishment is that even when inoculum strains have

superior nitrogen fixation traits, they often are inferior in

competition with indigenous rhizobia for nodulation of the

host root. The epidemic CHR genotypes could be particularly

useful because they appear to express superior ex planta
fitness in diverse soils over a large spatial range.
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