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Summary

The legume–rhizobia association is a powerful model of the limits of host control over microbes.

Legumes regulate the formation of root nodules that house nitrogen-fixing rhizobia and adjust

investment into nodule development and growth. However, the range of fitness outcomes in

these traits reveals intense conflicts of interest between the partners. Newwork that we review

and synthesize here shows that legumes have evolved varied mechanisms of control over

symbionts, but that host control is often subverted by rhizobia. Anoutcomeof this conflict is that

both legumes and rhizobia have evolved numerous traits that can improve their own short-term

fitness in this interaction, but little evidence exists for any net improvement in the joint trait of

nitrogen fixation.

I. Introduction

Plants can derive dramatic benefits from microbial partners, but
intimate interactions with microbes carry risks. Legumes and
rhizobia offer an ideal interaction for studying the challenges to
host control over microbial colonization and infection. Multiple
lineages of Proteobacteria have acquired the capacity to trigger
nodule formation on legume roots (and sometimes stems) and
are broadly defined as ‘rhizobia’. To obtain fitness benefit from
nodulation, legumes must first select rhizobia from the
microbial community in the rhizosphere (see Box 1 for glossary
of terms), of which only a small subset is compatible to fix
nitrogen on a particular host (Zgadzaj et al., 2016). Second,
legumes must regulate investment into nodules to maintain the

symbiosis at an acceptable cost-to-benefit ratio. Nodulation can
become particularly costly for legumes if rhizobia fail to fix
adequate nitrogen, if the host can cheaply acquire nitrogen from
the soil, or if the number of nodules formed is excessive
(Nishimura et al., 2002; Heath, 2010; Sachs et al., 2010a; Regus
et al., 2015) (Fig. 1). In this paper, we present an integrated
perspective on plant regulation of nodule organogenesis,
growth, and senescence, in each case highlighting traits of
rhizobia that can subvert control by the host. Some research has
suggested that this interaction is largely beneficial and lacking in
conflicts of interest (Friesen, 2012; Frederickson, 2017).
However, the new datasets that we highlight reveal the
unceasing evolutionary pressures of conflict faced by interacting
legumes and rhizobia.
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II. Selecting beneficial symbionts: one problem, many
solutions

The typical legume–rhizobia interaction is initiated when plant
roots release flavonoids (Box 1) into the soil, and in response the
rhizobia secrete nod factors (NFs; Box 1) that initiate a cascade of
transcriptional changes on compatible host roots (Wasson et al.,
2006; Liu & Murray, 2016). The rhizobia enter root cells, where
they differentiate into bacteroids (Box 1) and can fix nitrogen in
exchange for photosynthates. However, many legume–rhizobia
interactions do not fit this classic model. Within the legume family
(and related plant taxa that nodulate with nitrogen-fixing bacteria)
there is striking diversity in mechanisms of infection and nodule
development. For instance, some legumes have evolved the capacity
to form nodules on stem tissues, in some cases with rhizobia that do
not even secrete the canonical NFs (e.g. Aeschynomene; Chaintreuil
et al., 2016). Variation in the legume–rhizobia interaction reflects
divergent biogeographic histories (Sprent et al., 2017), indepen-
dent origins of nodulation within legumes (Werner et al., 2014),

and the evolution of novel plant mechanisms to better control
symbionts (Oono et al., 2010).

Host control over nodule infection and structure appears
relatively simple in some root-nodulating plants. In nonlegumes
and early-diverging legumes, cracks in the root epidermis allow
nitrogen-fixing bacteria to opportunistically colonize root interiors.
In some host taxa the rhizobia form fixation threads (Box 1) in
which they are only partially internalized in host cells (Behm et al.,
2014; Sprent et al., 2017). By contrast, infection is highly
coordinated in many derived legume taxa, in which root hairs curl
and entrap compatible rhizobia, the rhizobia become encased by
plant-derived membranes, and differentiated bacteroids live in
tightly controlled organelle-like structures called symbiosomes
(Box 1). Nodule development also varies markedly among
legumes. In legumes with determinate nodules, the nodules lack
ameristem and cease growth after a short developmental period. In
legumes with indeterminate nodule development, nodules retain
active meristems similar to other root tissues. Some legumes have
further evolved to enforce terminal bacteroid differentiation (TBD;

Box 1 Glossary

Bacteroids

Symbiotic nitrogen-fixing bacteria that have differentiated within host plant nodules into a form that fixes atmospheric nitrogen.

Fixation threads

Nitrogen-fixing symbionts that are boundby theplant cellwall in highly branched structures that takeupmuchof the space in the host cell but remain in
contact with space outside of the cell’s plasma membrane.

Flavonoids

Aromatic plant signaling molecules that are released by root tissue and attract compatible rhizobia.

Host range restriction peptidase (HrrP)

A rhizobia protein that protects against NCR peptides and promotes parasitic traits such as rapid proliferation in nodule tissue and lack of nitrogen
fixation.

Nod factors (NFs)

Lipochitooligosaccharides that are released by rhizobia into soil and that instigate nodule formation in compatible legume hosts.

Nodule-specific cysteine-rich (NCR) peptides

Nodule-specific peptides that are expressed during nodule development and are implicated in bacteroid differentiation.

Peribacteroid space

Within symbiosomes, the space between the outer plant-derived membrane and the bacteroids inside.

Polyhydroxybutyrate (PHB)

A carbon-rich energy storage molecule. The exact role of PHB is unclear, but it can protect cells from stressors, including oxygen deficiency, and can
increase survival during carbon limitation.

Rhizosphere

The near-root zone of plants that is inhabited by diverse microfauna.

Sanctions

A legumemechanism that reduces fitness of Fix� rhizobia, generally through a programof accelerated senescence of infected nodule cells that contain
ineffective symbionts.

Symbiosomes

Organelle-like structures within infected nodule cells that house bacteroids and surround them by a plant-derived membrane.

Terminal bacteroid differentiation (TBD)

A plant-controlledmechanism that causes irreversible differentiation of bacteroids such that they are unable to redifferentiate into free-living rhizobia.
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Box 1) such that the differentiated rhizobia cannot escape and
survive outside the nodule (though undifferentiated rhizobia
remain viable within the host). TBD has evolved in diverse
legumes, but is much more common in indeterminate than
determinate nodules (Oono et al., 2010).

An important unaddressed question is whether these different
modes of control over infection and nodule development represent
plant adaptations to enhance symbiotic benefits. Herein, we
assemble data from 106 recent publications to test whether

variation in nodule phenotypes (crack vs root hair infection,
fixation threads vs symbiosomes, indeterminate vs determinate
development, undifferentiated bacteroids vs TBD) has significant
effects on nitrogen fixation in nodules. Multiple methods are
available to quantify nitrogen fixation, but each approach has flaws.
We use studies employing the acetylene reduction assay, the only
method that has been broadly applied across legume taxa
(Supporting Information Methods S1). The critical caveat with
the acetylene reduction assay is that common test conditions (e.g.
disruption of roots, incubating tissues in acetylene for long periods)
can artificially reduce nitrogenase activity (Minchin et al., 1983,
1986). We carefully curated the dataset to quantify and minimize
artificial sources of variance, but still view these data as preliminary
given the challenges of standardizing data from so many sources
(Methods S1).

We found the consistent trend that root hair infection (in
comparison with crack infection) was associated with an increase in
maximum nitrogenase activity (Fig. 2; Methods S1; Table S1), but
this pattern was only significant in the sister lineage to legumes.
Other nodule traits did not show significant effects on nitrogen
fixation (Methods S1; Table S1). Previous work showed that TBD
has evolved multiple times (Oono et al., 2010) and is sometimes
linked to increased efficiency of symbiotic nitrogen fixation (Oono
& Denison, 2010), but our larger dataset did not support that
pattern. These data suggest the possibility that, even after millions
of years of evolution, plant adaptation has only rarely increased
nitrogen fixation in a permanent way. However, we view these data
cautiously, as there is a lot of variance introduced by the time course
in which the acetylene reduction assay is applied and by disruption
of the roots (Minchin et al., 1983, 1986). Future work should rely
on the more accurate 15N isotope method that measures relative
abundance of the 15N vs 14N stable isotopes, since this ratio is
depressed in plants gaining most of their nitrogen from symbiotic
fixation (Regus et al., 2017b).

In parallel, we can ask whether plant evolution has led to major
changes in host investment to in planta rhizobia.We assembled data
from 87 recently published papers that assess histological features of
nodules that can provide potential proxies of rhizobia fitness (Fig. 3;
Methods S2; Table S2). We test for variation among host taxa and
dependent on the host’s ability to enforce TBD (Oono &Denison,
2010; Oono et al., 2010). These data suggest that cool-season
legumes might invest less in rhizobia than warm-season legumes, in
terms of bacteroid population density within nodules. More
strikingly, the data suggest that evolution of TBD has significantly
decreased the size of infectedplant cells and the number of bacteroids
per unit area and per symbiosome. Interestingly, when comparing
among plant species inoculated with identical rhizobia, hosts with
TBD also formed smaller nodules and less nodule mass per shoot
mass (Oono & Denison, 2010). Although taxonomic sampling is
coarse, these analyses suggest that host adaptation has in some cases
led to significant decreases in investment into rhizobia.

III. Control and conflict over legume nodulation

For rhizobia, nodulation offers substantial fitness benefits that
appear unachievable in the highly competitive soil and
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Fig. 1 Legume and rhizobia conflict over nodule number. (a) Costs vs
benefits of nodulation aremodeled. Plant costs to nodulation (carbon, C) are
predicted to be a linear function of the number of nodules formed (Nod#)
with a slope ofm (cost per nodule): f{C} =m9Nod#. Plant benefits from
nodulation (nitrogen,N) are predicted to be anegative exponential function,
f{N} = a(1� e�B9Nod#), with diminishing returns that reach an asymptote at
aanddiminishat a rate corresponding toB. (b)Netbenefitsof nodulation can
be calculated by subtracting the cost from the benefit functions. The net
benefit function for nodulation is unimodal, increasingwith the formation of
nodules (zoneof cooperation) until theoptimal numberof nodules is reached
(N–Cmax), and abovewhich additional nodules reduce the host benefit (zone
of conflict). If too few or too many nodules are formed, the host does not
acquire thenetminimal benefit to set seed (i.e.<N–Cmin). (c)Hostfitness (i.e.
growth, seed set) varieswith thenumberof nodules formed. Lotus japonicus
mutants have been generated that form too many nodules compared with
wild-type and thus experience reduced fitness (Nishimura et al., 2002).

� 2018 The Authors

New Phytologist� 2018 New Phytologist Trust
New Phytologist (2018)

www.newphytologist.com

New
Phytologist Tansley insight Review 3



rhizosphere environments outside of the host (Zgadzaj et al.,
2016). Conversely, plant hosts benefit from nodulation only
under certain conditions, such as when soils are nitrogen poor
and contain compatible, nitrogen-fixing rhizobia (Regus et al.,
2017b). Among legume taxa, there is wide variation in their
specificity for restricting nodulation, often dependent on the
production of host-specific flavonoids (Wasson et al., 2006; Liu
& Murray, 2016) and host root receptors that recognize specific
rhizobia (Via et al., 2016; Kawaharada et al., 2017). ‘Specialist’
legume species are only able to form nodules with a low genetic
diversity of rhizobia strains – and thus might occupy fewer
environments – but can gain greater mean fitness benefits from
the symbiosis than more ‘generalist’ hosts (Ehinger et al., 2014).
A specialist–generalist trade-off would suggest that hosts often
benefit from blocking many rhizobia strains, which conflicts
with the fitness interest of rhizobia to increase nodulation. This

sets up the expectation that legumes are selected to manipulate
nodulation, both in terms of which rhizobia nodulate (see
following paragraph) and how many nodules form. In Fig. 1,
we model how host plants regulate nodule formation to achieve
maximum return on investment.

Recent work on host control of nodule formation has
highlighted the importance of legume root receptors that recognize
strain-specific surface polysaccharides of rhizobia (Via et al., 2016;
Kawaharada et al., 2017). In some instances, mutations introduced
into the host receptors or the corresponding symbiont polysaccha-
rides can lead to rhizobia being diverted from their normal route of
intracellular infection (Kawaharada et al., 2017). However, the
rhizobia can nonetheless form nodules via passive crack entry
(Acosta-Jurado et al., 2016), or through reentry into plant cells
from intercellular space (Kawaharada et al., 2017). Moreover, host
control over nodulation specificity can also be overwhelmed. Some
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rhizobia produce a cocktail of NFs that gives them access to diverse
host species in which they frequently fix little or no nitrogen
(Pueppke & Broughton, 1999). Other genotypes of rhizobia
dominate host nodules and rhizospheres through mechanisms
correlated with antibiotic resistance and catabolic flexibility, which
can promote persistence in the soil (Hollowell et al., 2015, 2016a,
b). Finally, some rhizobia evade host control over nodulation
specificity by hitchhiking into the nodule alongside NF-secreting
strains without themselves having any of the genes to encode NFs
(Gano-Cohen et al., 2016).

Soybeans have a unique mechanism to restrict nodulation by
harmful rhizobia. The Bradyrhizobium elkanii strain USDA61
produces many nodules on soybeans while fixing low levels of
nitrogen (Yasuda et al., 2016) and can induce chlorosis in the host
with rhizobitoxine (Tang et al., 2016). The soybean resistance allele
Rj4 encodes a thaumatin-like protein that is responsible for
effector-triggered immunity (Tang et al., 2016) and allows the host
to terminate nodules formed by USDA61 (Yasuda et al., 2016).
However, a mutant screen discovered seven single-gene USDA61
mutants that can override the Rj4 defense and successfully infect
soybean hosts (Faruque et al., 2015). No Rj4 homologue has been
found in other species, but it is likely that similar mechanisms exist
in other legumes.

Perhaps the most important gap in host control is that legumes
have little or no ability to detect nitrogen fixation capacity of
rhizobia strains before nodule formation. Classic mixed inocula-
tion experiments using isogenic strains varying in nitrogen fixation
function have shown that hosts are nodulated with equal frequency
by both (Amarger, 1981; Hahn & Studer, 1986). Therefore, hosts
permit nodulation based on signals of rhizobia compatibility in the
rhizosphere that can occur days before infection, and weeks before
nitrogen fixation commences. Given the gaps in host control over
nodule formation, post-infection mechanisms of host control are a
critical second layer of legume defense.

IV. Control and conflict over nodule growth and
senescence

After nodule formation, conflicts of interest arise over the exchange
of fixed nitrogen for plant carbon, and rhizobia can evolve to adjust
this trade in their favor. For instance, starvation experiments show
that rhizobia can hoard carbon from hosts as the storage molecule
polyhydroxybutyrate (PHB; Box 1) to increase their subsequent
survival when they escape from the host into the soil (Ratcliff et al.,
2008). While the exact role of PHB is debated (Box 1), it is
interesting that only some rhizobia accumulate PHB at high levels
(Ratcliff et al., 2008). Conversely, some legume taxa have evolved
to maximize nitrogen fixation efficiency at the expense of bacteroid
viability by inducing TBD (Alunni & Gourion, 2016). One
mechanism is for hosts to produce nodule-specific cysteine-rich
(NCR) peptides (Box 1) that induce severe changes to intracellular
rhizobia, sometimes causing bacteroids to prematurely die unless
they bear a specific transporter to modulate the effects of NCR
peptides (Haag et al., 2011). Conversely, NCR peptide signaling
can ‘backfire’ on hosts by rendering potentially compatible
interactions incompatible (Wang et al., 2017; Yang et al., 2017).

Some rhizobia can subvert these host control mechanisms with the
plasmid-borne metallopeptidase HrrP (host range restriction
peptidase; Box 1), which cleaves NCR peptides in vitro (Price
et al., 2015).HrrP expression directly increases fitness of rhizobia in
planta, suggesting that NCR peptide signaling is involved in an
ongoing evolutionary arms race between symbionts and hosts that
attempt to impose TBD.

Legumes can also senesce nodules to halt investment into
rhizobia when the costs of symbiosis become too great, such as
during dark stress (Vauclare et al., 2010) or when nodules are
infected by rhizobia that fix negligible nitrogen (i.e. Fix�; Berrabah
et al., 2015). Rhizobia benefit from delaying senescence, whereas
legume hosts benefit from senescing nodules when costs of rhizobia
outweigh the benefits. For instance, by providing little or no
nitrogen, Fix� rhizobia can exploit host resources without paying
the high energetic expense of fixing nitrogen (Heath, 2010; Sachs
et al., 2010a; Porter & Simms, 2014). Fix� rhizobia can impose
important costs on hosts, resulting in a 12–28% reduction of leaf
nitrogen content (Regus et al., 2015). However, legumes can
sanction (Box 1) Fix� rhizobia by causing these nodules to senesce
prematurely, significantly reducing fitness of the rhizobia (Sachs
et al., 2010b; Oono et al., 2011; Regus et al., 2017a). A key step
during nodule senescence is the neutralization of the peribacteroid
space (Box 1) that surrounds the symbiosome, an otherwise acidic
environmentwhich facilitates import of host resources (Pierre et al.,
2013). When Fix- mutants infect Medicago truncatula hosts, they
fail to obtain full peribacteroid space acidification, suggesting that
hosts can abort symbiosome development if nitrogen fixation is
insufficient (Pierre et al., 2013). Intriguingly, there is evidence that
undifferentiated ‘saprophytic’ rhizobia can escape into senescent
portions of indeterminate nodules (where rhizobia that are no
longer fixing nitrogen are broken down) and scavenge host
resources before presumably returning to the soil (Timmers et al.,
2000). Thus, hosts might not recover all the resources invested in
this interaction, and rhizobia might be selected to exploit this rich
resource.

Finally, legumes and rhizobia are in conflict over the regulation
of the oxygen environment inside the nodule. Nitrogenase is
rapidly inactivated by oxygen, so hosts maintain a microaerobic
environment inside nodules through a cellular oxygen diffusion
barrier and expression of the oxygen carrier leghemoglobin
(Sujkowska et al., 2011). Conceivably, rhizobia benefit from
increased free oxygen to the extent that this increases bacteroid
respiration, whereas hosts benefit fromadjusting the nodule oxygen
environment according to their immediate nitrogen requirements.
Therefore, oxygen restriction could be a host mechanism to
decrease in planta fitness of ineffective symbionts, potentially by
restricting respiration rates (Kiers et al., 2003).

V. Conclusion

The legume–rhizobia association has many features of an antag-
onistic arms race, with hosts evolving diverse mechanisms of
control and rhizobia evolving subversion of host control. Within
these taxa, variation in fitness outcomes and recurrent loss of the
ability to initiate symbiosis for both hosts (Werner et al., 2014) and
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symbionts (Sachs et al., 2010a) suggests that the legume–rhizobia
interaction might be regularly moving into a context of net cost. A
common thread in these interactions is that rhizobia exhibit an
evolutionary advantage over hosts by having greater population
sizes and faster reproduction rates. Therefore, rhizobia are expected
to recurrently gain the capacity to exploit hosts, causing selection on
hosts to evolve novel or enhanced defense mechanisms, perhaps
with little opportunity for hosts to be exploitative themselves
(Porter & Simms, 2014). Research is needed to further understand
these processes, to elucidate mechanisms of exploitation and
defense, and to uncover the stepwise process by which these
mechanisms evolve.
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