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Abstract 18 

Modern agriculture intensely selects aboveground plant structures, while often neglecting 19 

belowground features, and evolutionary tradeoffs between these traits are predicted to disrupt host 20 

control over microbiota. Moreover, drift, inbreeding, and relaxed selection for symbiosis in crops 21 

might degrade plant mechanisms that support beneficial microbes. We studied the impact of 22 
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domestication on the nitrogen fixing symbiosis between cowpea and root-nodulating 23 

Bradyrhizobium. We combined genome-wide analyses with a greenhouse inoculation study to 24 

investigate genomic diversity, heritability, and symbiosis trait variation among wild and early-25 

domesticated cowpea genotypes. Cowpeas experienced modest decreases in genome-wide diversity 26 

during early domestication. Nonetheless, domesticated cowpeas responded efficiently to variation in 27 

symbiotic effectiveness, by forming more root nodules with nitrogen-fixing rhizobia and sanctioning 28 

non-fixing strains. Domesticated populations invested a larger proportion of host tissues into root 29 

nodules than wild cowpeas. Unlike soybean and wheat, cowpea showed no compelling evidence for 30 

degradation of symbiosis during domestication. Domesticated cowpeas experienced a less severe 31 

bottleneck than these crops and the low nutrient conditions in Africa where cowpea landraces were 32 

developed likely favored plant genotypes that gain substantial benefits from symbiosis. Breeders 33 

have largely neglected symbiosis traits, but artificial selection for improved plant responses to 34 

microbiota could increase plant performance and sustainability.  35 

 36 
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 38 

Introduction 39 

Modern agricultural practices and intense selection for yield can degrade plant-microbial 40 

symbioses (Porter and Sachs 2020). Breeding practices select aboveground traits, while neglecting 41 

belowground plant features, and evolutionary tradeoffs between these traits can disrupt host 42 

control over microbiota (Denison 2015). Moreover, the small effective population sizes of 43 

domesticated plants, the increased inbreeding, and relaxed selection for traits that are not critical to 44 

agriculture (Renaut and Rieseberg 2015; Moyers et al. 2017; Gaut et al. 2018; Marques et al. 2020), 45 

can each lead to the degradation of host mechanisms that regulate microbiota (Porter and Sachs 46 

2020). Seminal data from staple crops, such as soybean and wheat, show that root-associated 47 

microbiota provide less benefit to modern cultivars when compared to their wild or less-48 

domesticated varieties (Kiers et al. 2007; Hetrick et al. 1992). Differences between crops and their 49 

wild relatives can sometimes be directly tied to traits that were favored under artificial selection, 50 

such as in maize, where selection for earlier flowering time reduced colonization by arbuscular 51 

mycorrhizal fungi (Sawers et al. 2018). In other cases, effects of artificial selection vary with the soil 52 
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environment. Inoculation of diverse herbaceous crops under phosphorus-rich conditions showed 53 

that wild plants are often more responsive to soil mutualists compared to domesticated relatives 54 

(Martin-Robles et al. 2018). For legumes, evidence suggests that high soil nitrogen concentrations 55 

might reduce the net benefits that host plants receive from symbiosis with nitrogen fixing rhizobia 56 

(Weese et al. 2015).  57 

Legume crops are unique among crops in their capacity to obtain substantial amounts of 58 

nitrogen by associating with rhizobia (West et al. 2002; Gordon et al. 2016). Biological nitrogen 59 

fixation (BNF) by rhizobia offers an attractive alternative to chemical-nitrogen fertilization as it 60 

comes without fossil fuel costs or polluting byproducts. However, the optimization of BNF can be 61 

difficult to attain in practice. The main challenge is that legumes encounter a diversity of rhizobial 62 

strains that vary in the degree of compatibility and benefits they provide for the host, including 63 

ineffective rhizobia that instigate nodule formation but offer little or no fixed nitrogen (Sachs et al. 64 

2018; Yates et al. 2011). To maximize fitness, legumes must invest in rhizobia that provide benefits 65 

to the host and defend against ineffective or incompatible strains (Denison 2000; West et al. 2002). 66 

Legumes can select some rhizobia during nodule formation, by responding to strain-specific genetic 67 

signals (Masson-Boivin and Sachs 2018; Wang et al. 2018). Additionally, plants can choose partners 68 

based on signals that indicate qualities of the potential partner, (i.e., Partner choice; Simms and 69 

Taylor 2002). After nodulation has occurred, legumes can reduce within-nodule proliferation rates of 70 

ineffective rhizobia relative to beneficial strains (i.e., post-infection sanctions) (Kiers et al. 2003; 71 

Regus et al. 2017; Denison 2000; Oono et al. 2011). However, the prevalence of ineffective rhizobia, 72 

both in natural and agronomic soils, suggests either that host mechanisms are unable to extirpate 73 

uncooperative genotypes from their local environment, or that hosts are encountering strains that 74 

are compatible with different host species – and are ineffective on the focal host species (Sachs et al. 75 

2018; Gano-Cohen et al. 2020).  76 

Cowpeas (Vigna unguiculata Walp L.), are versatile legumes, grown for their high nutritional 77 

value, protein-dense seeds, drought tolerance, and capacity to fix nitrogen with diverse rhizobia 78 

(Foyer et al. 2016). Wild cowpeas, categorized as V. unguiculata dekindtiana, are native to Africa (Ali 79 

et al. 2015) and are the progenitor of domesticated cowpea (Coulibaly et al. 2002). Modern cowpea 80 

cultivars evolved from two populations of early-domesticated landraces arising in northern and 81 

southern regions of Africa, referred to as Genepool-1 and Genepool-2 populations, which are each 82 

most closely related to wild cowpeas from the same geographic region (Huynh et al. 2013). 83 
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These cowpea landraces are consistent with stage two of the four proposed stages of crop 84 

domestication (Gaut et al. 2018). During stage two, plants increase the frequency of domesticated 85 

alleles through a domestication bottleneck that occurs when cultivation separates domesticated 86 

from wild genotypes. However, only in later domestication stages is there geographic radiation of 87 

plants into multiple environments (stage three) and expansion of human practices (that might 88 

include fertilization, inoculation, etc.), or intensive breeding to maximize yield among locally adapted 89 

varieties (stage four) (Gaut et al. 2018; Meyer and Purugganan 2013). Relative to wild cowpeas, 90 

these landraces have shifted from outbreeding to self-compatibility, lost seed dormancy and pod 91 

dehiscence, flower earlier, and have enhanced seed number and pod size (Pasquet 1996; Singh et al. 92 

1997). Domesticated cowpeas predominantly form nodules with Bradyrhizobium and occasionally 93 

Rhizobium strains (Shamseldin et al. 2017), but no work that we are aware of has examined rhizobial 94 

symbiosis in wild cowpeas and it is unknown whether cowpeas can sanction ineffective rhizobia, as 95 

has been demonstrated for soybeans (Kiers et al. 2003). Field inoculation of domesticated cowpeas 96 

mostly employ Bradyrhizobium spp., which can increase shoot biomass, grain yield, percent of 97 

nitrogen derived from the atmosphere (%Ndfa), and nodulation, but effects vary widely among 98 

experiments (Woliy et al. 2019; Ulzen et al. 2019; Ulzen et al. 2016; Boddey et al. 2017; Martins et al. 99 

2003; Kyei-Boahen et al. 2017; Zilli et al. 2009). Symbiosis traits in crops, i.e., host traits that regulate 100 

colonization, infection, and fitness gains from microbiota, might be key factors that drive variation in 101 

plant performance (Porter and Sachs 2020). To date, breeding programs in cowpea and other 102 

legumes have neglected symbiosis traits when selecting parental material.  103 

Here, we investigated how domestication has influenced symbiosis traits in cowpeas. Using 104 

eight wild cowpea genotypes and twelve early-domesticated landrace genotypes, we quantified 105 

changes in mean trait values and genetic variance associated with clonal and mixed strain 106 

inoculation of Bradyrhizobium diazoefficiens as well as whole soil inoculation. The twenty cowpea 107 

genotypes were selected from a set of 438 cowpea accessions reported in Huynh et al. (2013) and 108 

were further genotyped for a genome-wide set of single nucleotide polymorphic sites (SNPs) to test 109 

whether the patterns of genetic divergence could predict differences in segregating variation in 110 

symbiosis traits between wild and domesticated cowpeas. In a clonal strain inoculation experiment, 111 

we used the B. diazoefficiens type strain USDA110-ARS, and an ineffective mutant on cowpea that 112 

was derived from it, USDA110-LI. In a parallel experiment, we inoculated plants with soil rinsates 113 

from a California field site where a multi-parent intercross population of cowpea genotypes have 114 

been propagated for multiple seasons (Huynh et al. 2018). We estimated components of genetic 115 
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variation and heritability of symbiosis traits when cowpeas are exposed to different inoculation 116 

treatments. Our goals were to i) quantify and compare genetic diversity of wild and domesticated 117 

cowpeas, ii) examine whether symbiosis traits, in particular sanctions or partner choice mechanisms 118 

of nonfixing rhizobia, became degraded during the process of domestication, and iii) measure the 119 

heritability of symbiosis traits and their potential to be selected upon in agronomic settings.  120 

 121 

Materials and Methods  122 

Genome-wide variation of Cowpea accessions – To examine genetic variation and admixture 123 

between wild and cultivated cowpea we performed a combined analysis of 380 landraces and 58 124 

wild cowpea accessions reported in Huynh et al. (2013) using the 1536-SNP GoldenGate genotyping 125 

assay. Huynh et al. (2013) analyzed wild and domesticated genotypes separately, with a focus on 126 

geographic origin. To maintain consistency with Huynh et al. 2013, SNPs with a minimum allele 127 

frequency (MAF) < 0.05 and with a call rate < 0.90 were discarded, for a final filtered set of 920 SNPs. 128 

Genetic differentiation was evaluated using a principal component analysis (PCA) with the package 129 

adegenet (Jombart, 2008). Admixture and structure were examined using the R package LEA (Frichot 130 

et al. 2014; Frichot and François 2015). One to ten ancestral populations (i.e., entropy criterion; K = 1 131 

to 10) were assumed using 100 repetitions. To test if patterns of genetic diversity differed among 132 

populations, a generalized mixed model analysis using SNP loci as our random factor was 133 

implemented (Costa et al. 2021; Kamvar et al. 2016). The GLMM with a Beta distribution and a logit 134 

link function was modeled using the package glmmTMB (Brooks et al. 2017; Douma and Weedon 135 

2019). Post-hoc comparisons based on the model were performed with the R package emmeans 136 

(Searle et al. 2012). Population statistics were estimated with the R package hierfstat (Goudet 2005).   137 

To have a more robust estimation of the genomic-level variation and relationships among 138 

the twenty focal cowpea lines, we further genotyped the wild accessions using the Illumina Cowpea 139 

iSelect Consortium Array, screening 51,128 SNPs across the cowpea genome. Domesticated 140 

accessions were previously genotyped with the same array (Muñoz-Amatriaín et al, 2017). SNPs with 141 

a MAF < 0.1 and with a call rate < 0.95 were discarded using the R package snpReady (Granato et al. 142 

2018), for a final filtered set of 34,762 SNPs. Pairwise genetic distances were estimated with the R 143 

package adegenet (Jombart 2008) and neighbor-joining was used to reconstruct phylogenetic 144 

relationships. Branch support values were evaluated by a bootstrap analysis where SNPs were 145 
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sampled with replacement 100 times using the phylo.boot function of the package ape (Paradis and 146 

Schliep 2018).  147 

 148 

Cowpea genotypes — The eight wild cowpea accessions originate from Botswana 149 

(PI632890), Tanzania (PI632876, PI632892), Zimbabwe (PI632891) and Niger (PI632882, PI632879, 150 

PI632880, PI632881). The twelve domesticated cowpeas include a population that is largely 151 

restricted to northern Africa, with genotypes from Egypt (Tvu-9492), Senegal (Tvu-14346), Benin 152 

(Tvu-8834), Nigeria (Tvu-3804) and Niger (Tvu-15591, Tvu-14971; hereafter Genepool-1) and a 153 

population from southern Africa, with genotypes from Mozambique (NamuesseD, Nhacoongo-3, 154 

Muinana–Lawe), Tanzania (Tvu–1280), Malawi (INIA34), and Zambia (Tvu-13305; Genepool-2; Huynh 155 

et al. 2013). Domesticated accessions were only selected from germplasm collections made 156 

before 1975. After this year transfer of cowpea germplasm began between different African 157 

breeding programs, causing admixture among accessions (Huynh et al. 2013). Moreover, only 158 

landraces with an admixture score < 0.01 were selected based on analyses reported in Huynh et al. 159 

(2013) to minimize effects of introgression. This threshold was not imposed in the wild genotypes to 160 

maintain a full spectrum of the genetic variation segregating within wild populations. Seeds were 161 

obtained from the USDA germplasm collection (Griffin, GA).  162 

 163 

Bradyrhizobium strains – USDA110 was isolated from soybean in the United States (Kaneko 164 

et al. 2002) and is a broadly used inoculant for legume crops (Chamber et al. 1988; Musiyiwa et al. 165 

2005; Keyser et al. 1982; Urtz et al. 1996). Strains related to USDA110 are found to nodulate cowpea 166 

in Africa (Pule-Meulenberg et al. 2010). Most cowpea cultivars respond positively to USDA110 167 

inoculation (Keyser et al. 1982), and it provides substantial nitrogen fixation to cowpeas compared 168 

with other rhizobial strains (Chamber et al. 1988; Yelton et al. 1983). USDA110-ARS (hereafter, Fix+) 169 

is a spontaneous mutant of USDA110 arising from antibiotic selection on azide (10 μg ml-1), 170 

rifampicin (500 μg ml-1), and streptomycin (1000 μg ml-1; Kuykendall and Weber 1978) that was 171 

confirmed to efficiently fix nitrogen on six genotypes of soybeans (Kiers et al. 2007). USDA110-LI 172 

(hereafter, Fix-) was also a spontaneous mutant of USDA110 originally isolated from soybean 173 

nodules based on colony morphology with white, opaque mucoid colonies formed on modified yeast 174 

mannitol medium (YM) and a 5-to-10-fold reduced efficiency at fixing nitrogen measured by 175 
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acetylene reduction assay (Kuykendall and Elkan 1976). Strains were obtained from the USDA 176 

National Rhizobium Germplasm Resource Collection (Beltsville, MD). 177 

 178 

Inoculation Experiments — Seeds were surface sterilized in bleach (5% sodium hypochlorite), 179 

rinsed in sterile ddH2O, scarified, and planted in bleach-sterilized 1-gallon plastic pots containing an 180 

autoclave-sterilized 50:50 mix of silica sand and limestone flour silica sand, which contains negligible 181 

nutrients to support plant growth (Regus et al., 2015). Three seeds were planted per pot from 182 

06/13/2018 to 06/15/2018. On 6/21/2018 seedlings were thinned to one plant per pot to size match 183 

the remaining seedlings among plant lines. One day later rhizobial inoculation followed. Greenhouse 184 

temperatures averaged 86 °F + 14 °F (standard error, SE) and relative humidity was 55% + 20%. 185 

For the clonal strain experiment, Fix+ and Fix- strains were plated on a modified arabinose 186 

gluconate medium (MAG; Sachs et al. 2009) and a single colony per strain was spread onto 8-10 187 

plates to generate dense lawns. After 7 days of growth the cells were washed from the plates into 188 

liquid MAG media and cell concentrations were quantified by colorimetry. Liquid cultures were 189 

centrifuged at ~750g, spent media was removed, and the cells were resuspended in sterile ddH2O at 190 

a concentration of 1 x 108 cells ml-1. Plants were inoculated with either 5 ml of the Fix+ or Fix- clonal 191 

Bradyrhizobium cells (single inoculation, 5 x 108 cells), 5 ml of a mixture comprising equal 192 

concentrations of both strains (co-inoculation, 2.5 x 108 cells of each strain), or 5 ml sterile ddH2O as 193 

a control.  194 

To investigate variation in symbiosis traits when hosts were exposed to an intact microbial 195 

community we performed a soil inoculation experiment. Field soil was sampled from the University 196 

of California Riverside Agricultural Experiment Station at four sites within a 5-acre field where 197 

diverse cowpeas are propagated (coordinates: 33.967, -117.339; Huynh et al. 2018). The field has a 198 

history of cultivating cowpea during odd-numbered years, starting in 2003. Additionally, the field is 199 

intercropped with barley and occasionally with other legume crops such as soybean and pigeonpea. 200 

The field has not been inoculated with any rhizobia. Soil was passed through a sterilized 2mm sieve 201 

(6L per site), and apportioned into aliquots of 400g. From each sample, 400mL of sterile water was 202 

added, the sieved soil was shaken vigorously, filtered twice through 8 layers of sterile cheesecloth, 203 

and the filtered supernatants were pooled into sterile flasks, which were allowed to settle overnight 204 

at room temperature. This method allows us to inoculate plants with a diverse community of 205 



 

 

 

This article is protected by copyright. All rights reserved. 

 

microbes from the supernatant, and to avoid adding sediments to the inoculated plants that could 206 

change the soil texture and chemical makeup (Unkovich and Pate 1998). The supernatant from each 207 

flask was divided into two equal portions, one of which was autoclaved and allowed to cool to serve 208 

as a negative control, while the other was reserved at room temperature and used for inoculation. 209 

Seedlings were inoculated with 10mL of each microbial inoculum (alive or dead) and each one was 210 

separately plated (100ul) in MAG and incubated at 29°C for eight days to confirm high densities of 211 

slow growing bacteria like Bradyrhizobium. 212 

In both experiments, plants were fertilized weekly by applying 10 ml of Jensen’s solution 213 

with 1 g/L K15NO3 (2% 15N by weight), which includes all the necessary micronutrients (Somasegaran 214 

and Hoben 1985), and a minimal concentration of nitrogen to support cowpea growth. Plant 215 

genotypes and inoculation treatments were randomly arranged within blocks in the greenhouse with 216 

five plant replicates per inoculation treatment x plant genotype combination, except for controls 217 

that had 3 replicates. The clonal strain experiment had 360 plants, including 300 that were 218 

inoculated (20 lines x 3 inoculation treatments x 5 replicates) and 60 control plants (20 lines x 3 219 

replicates). The soil inoculation experiment had 160 plants, including 100 that received the live 220 

inoculum (20 lines x 5 replicates) and 60 that received the autoclaved control (20 lines x 3 221 

replicates).  222 

 223 

Plant harvest and nodule culturing –Harvest occurred from 7/30/2018 to 8/3/2018 and from 224 

8/13/2018 to 8/23/2018 because of the time needed to carefully wash roots, and dissect and culture 225 

nodules, as described below. Plants were removed from pots, washed free of sand, and dissected 226 

into root, shoot, and nodule portions. Nodules were counted and photographed. Rhizobia were sub-227 

cultured from nodules of co-inoculated plants to differentiate Fix+ and Fix- strains. Nodules were 228 

crushed and streaked on MAG and isolated colonies were subcultured on MAG with rifampicin (500 229 

μg ml-1) and streptomycin (1000 μg ml-1), selecting for Fix+, and YM media, on which Fix- exhibit fast 230 

growth and slimy appearance. Five nodules each from three co-inoculated plants per genotype were 231 

randomly picked and assessed (~15 nodules per genotype, 268 total). From each nodule, ~50 232 

colonies were counted to estimate the proportion of Fix+ to Fix- strains (11,586 colonies in total).  233 

Leaf 15N ‘atom per cent difference’, a measure of nitrogen fixation (Regus et al. 2014), was estimated 234 

as the percentage of 15N atoms over total nitrogen in each sample (Unkovich et al. 2008). The δ15N of 235 
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each sample was calculated by comparing 15N abundance expressed as parts per thousand relative 236 

to atmospheric N2, these values were used to compare among plants inoculated with Fix+ and Fix- 237 

strains following the formula: 238 

 239 

 240 

 241 

To calculate these values individual leaves of each plant were oven dried, powdered using 242 

steel bead beaters at 14,000 rpm, and 4 mg per plant was transferred into individual tin capsules, 243 

including four replicates per genotype for the Fix+, Fix- and two replicates for control inoculation 244 

treatments (178 samples total). Isotopic analyses were performed at the UC Davis Stable Isotope 245 

Facility.  246 

 247 

Trait data analysis – Size comparisons among wild and domesticated populations were performed by 248 

calculating scale free measurements to minimize effects of initial seedling size. Investment into 249 

symbiosis was calculated by dividing the dry nodule biomass of each plant over the total biomass. 250 

Host growth response was calculated by subtracting the mean biomass values (i.e., shoot, root, and 251 

nodules) of the control plants within a population from the inoculated plants belonging to the same 252 

group, dividing by the control value, and multiplying the quotient by 100 (Regus et al. 2015). Means 253 

per population were calculated for plants harvested during the same week to account for variation 254 

in days post inoculation.  255 

 256 

 257 

 258 

Where i indicates plant replicate and j indicates population mean value. 259 

 260 
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Dry nodule biomass values of co-inoculated plants (where a subset of nodules was used for 261 

subculturing) were inferred by generating a wet-to-dry nodule weight linear regression (per 262 

genotype). To test for post-infection sanctions, a binomial test was used to evaluate whether nodule 263 

occupancy of Fix+ deviated from the null expectation of 50% given that the strains were inoculated 264 

in equal proportions. Results were analyzed independently for each genotype tested. 265 

 Linear mixed models (LMMs) were used to analyze differences in symbiosis traits among the 266 

three populations defined by Huynh and colleagues (2013), i.e., Genepool-1, 2, and wild cowpeas 267 

(three-population analysis). However, because landraces of Genepool-1 and 2 are each most 268 

closely related to wild cowpeas from the same region (Huynh et al., 2013), we also analyzed 269 

comparisons that divided the wild cowpeas into southern Africa populations (PI632890, 270 

PI632876, PI632892, PI632891; i.e., Wild-1) and northern Africa populations (PI632882, PI632879, 271 

PI632880, PI632881; i.e., Wild-2, four-population analysis). Inoculation treatment and population 272 

were treated as fixed effects, cowpea genotype and genotype x treatment interactions were treated 273 

as random effects, and days post inoculation was used as a covariate. Response variables were 274 

transformed if necessary, to improve normality. Analyses were performed using The R project for 275 

Statistical Computing version 3.6.1 (R Core Team 2020).  276 

 277 

Components of trait variation – Independent linear mixed models were constructed to estimate the 278 

components of variation in each symbiosis trait under the clonal inoculation treatments, where 279 

genotypic effects could be best isolated. Models of variance-covariance structure were used to test 280 

whether the expression of additive genetic variance (2
a) in each symbiosis trait varied among 281 

treatments, or among the wild and domesticated populations (three-population analysis), and if the 282 

expression of 2
a in populations varied among treatments. Because of limited sampling of plant 283 

genotypes, it was not practical to conduct this specific analysis using the four-population approach. 284 

The variance covariance matrix for the genotype effect known as the additive relationship matrix 285 

was estimated from the SNP data with the A.mat function in sommer (Covarrubias-Pazaran, 2016). 286 

To test if the additive genetic variance in the trait of interest varies among the levels of the factor of 287 

interest (treatment, population, population x treatment), a model where the among-genotype 288 

variance was constrained to be the same across levels was compared with a heterogeneous variance 289 

structure model (Table S1). Differences in the expression of genetic variance were assessed using 290 
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log-likelihood tests among models (Shaw, 1991). Breeding values of each genotype were estimated 291 

by best linear unbiased prediction (BLUPs) (Bauer et al. 2006; Liu et al. 2008; Piepho et al. 2008), 292 

taking into account the additive relationship matrix among genotypes (genomic BLUPS, or GBLUPs). 293 

Narrow-sense heritability (h2) was estimated as the proportion of additive variance of two alleles at 294 

a locus over the phenotypic variance (h2= VA/VP), (Bernardo 2020). Analyses were performed in the R 295 

package sommer (Covarrubias-Pazaran 2016). 296 

Genetic correlations among traits were estimated following Falconer (1952) and 297 

implemented by Etterson (2004) and Saxton (2004), where the correlation between any pair of traits 298 

i and j, rAij , was estimated as follows, where COVAij is the covariance between an individual’s 299 

breeding value for one trait and its breeding value for the other trait: 300 

 301 

 302 

 303 

VAi is the genetic variance of trait i and VAj is the genetic variance of trait j. To estimate the 304 

genetic correlation between traits we performed multi-trait and multi-environment linear mixed 305 

models (Covarrubias-Pazaran 2016) with treatment, population, and days since inoculation as fixed 306 

factors, and cowpea genotype as random effect.  307 

 308 

Results  309 

Genome-wide variation in wild and domesticated cowpea populations 310 

Both the three- and four-population analyses (i.e., genetic clusters) were supported by the 311 

entropy criterion in LEA (i.e., k=3, k=4; 1,536-SNP assay; Fig. 1, Fig. S1). Many domesticated 312 

accessions maintain substantial ancestry from wild cowpeas (i.e., admixed cowpeas), however 313 

domesticated accessions from either of the two Genepools defined by Huynh et al. (2013) exhibit 314 

less evidence of admixture with wild cowpeas (Fig. 1), consistent with breeding under crop 315 

production (Gaut et al. 2018). Genepools 1 and 2 were more divergent between them (FST=0.18 316 

[0.17-0.19]) than with the wild population (Genepool-1 vs. wild: FST= 0.13[0.13-0.14]; Genepool-2 317 



 

 

 

This article is protected by copyright. All rights reserved. 

 

vs. wild: FST=0.12[0.10-0.12]), supporting previous findings that suggested two separate 318 

domestication events and the maintenance of allelic variation from wild cultivars in these two 319 

distinct pools of domesticated accessions (Huynh et al. 2013; Muñoz-Amatriaín et al. 2017). 320 

Phylogenetic analysis of the twenty accessions genotyped with a larger set of SNPs (51,128 321 

SNP assay; Fig. 1) supported the hypothesis that Genepools-1 and 2 are each most closely 322 

related to wild cowpeas from northern Africa (PI632882, PI632879, PI632880, PI632881) and 323 

southern Africa (PI632890, PI632876, PI632892, PI632891), respectively. These data are consistent 324 

with divergent subsets of wild germplasm being carried to northern and southern regions of Africa 325 

during waves of human migration, with modest degrees of gene flow between them (Huynh et al. 326 

2013; Muñoz-Amatriaín et al. 2017).  327 

The domesticated populations experienced a modest, but significant reduction in gene 328 

diversity (Hs; ~6.25%) relative to the wild cowpeas (i.e., three-population analysis; HS: X3
2= 12636, p < 329 

0.01). Hs was significantly different among all three populations (Table S2), while heterozygosity (Ho) 330 

was only significantly different between Genepool-2 and the wild cowpeas (t=1.56, p < 0.01; 331 

Table S2). When the wild cowpeas were separated in two distinct groups (i.e., four-332 

population analysis), Ho was not significantly different between the wild population and the 333 

two domesticated populations (Table S3), while Hs was significantly different among most 334 

populations except between Genepool-1 and the wild population from southern Africa (t= -335 

1.389, p = 0.5063; Table S3). 336 

 337 

Genotypic variation in symbiosis traits 338 

Nodulation of cowpea genotypes – The domesticated cowpea populations were more 339 

responsive to inoculation, forming more nodules and varying more between treatments (Fig. 2). In 340 

the clonal strain experiment, the wild genotype PI632891 formed nodules in only ~50% of inoculated 341 

plants, whereas the wild genotype PI632890 did not form any nodules in any treatment. All other 342 

genotypes formed nodules in at least 70% of inoculated replicates (mean = 95.2 + 2.79%; Table S4). 343 

None of the control plants formed any nodules. Moreover, both domesticated populations formed 344 

significantly more nodules than the wild cowpeas (mean nodule counts: wild, 8.55 + 0.82; Genepool-345 

1, 119.7 + 12.72; Genepool-2; 142.8 + 11.52; Table 1) but there was no difference between the 346 
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domesticated populations. The same trend was observed for the soil inoculation experiment (wild, 347 

18.87 + 2.07; Genepool-1, 119.38 + 9.19; Genepool-2; 140.6 + 8.86; t17 = 5.77; p = <0.001; Fig. 2; 348 

Table S5). 349 

Domesticated cowpea populations formed more nodules in the Fix+ treatment relative to 350 

Fix-. For Genepool-1, both the Fix+ and the co-inoculation treatments formed significantly more 351 

nodules than the Fix- treatment (Fix+,135.6 + 17.1; co-inoculation, 179.8 + 23.2; Fix-, 39.26 + 9.25; 352 

Table S6). For Genepool-2 the same pattern was found (Fix+ 167.48 + 19.04, co-inoculation 182.8 + 353 

23.02, Fix- 79.03 + 10.54; Table S6). For the wild cowpea genotypes, there was no significant 354 

differences in the number of nodules formed when comparing Fix+ and Fix- inoculations (Table S6). 355 

Investment – In the clonal strain experiment, domesticated cowpea populations invested a 356 

higher proportion of plant biomass into nodules than the wild cowpeas (wild cowpeas, 0.007+ 357 

0.0008; Genepool-1, 0.02 + 0.001; Genepool-2, 0.02 + 0.001), but there was no difference between 358 

the domesticated populations (Fig 2; Table S5). These differences were not seen in the soil 359 

inoculation experiment (wild cowpeas, 0.0341+ 0.003; Genepool-1, 0.0303 + 0.001; Genepool-2, 360 

0.0362 + 0.003; Table S5).  361 

Mean nodule biomass – In the clonal strain experiment, wild cowpeas formed nodules that 362 

were 1.4 + 0.3 mg on average while Genepool-1 and 2 produced higher and lower values, 363 

respectively (1.8 + 0.2 mg; 0.9 + 0.1 mg), but no significant differences for mean nodule biomass 364 

were found among the three populations (Table S5). Only the wild cowpeas had significant 365 

differences between Fix+ and Fix- treatments, with Fix+ inoculated plants producing nodules that 366 

were almost twice the mean mass (~2.1 mg) of those on Fix- plants (~1.3 mg; t41 = 2.189, p= 0.034; 367 

Table S7). Under the Fix+ treatment, wild genotypes formed bigger nodules on average than 368 

Genepool-2 (Table S5). Under the Fix- treatment Genepool-1 formed bigger nodules than wild 369 

genotypes and Genepool-2 (Table S5). In the soil community experiment there were no significant 370 

differences among the cowpea populations for mean nodule biomass (Table S5).  371 

Host growth response and nitrogen fixation – In the clonal strain experiment, growth 372 

response to inoculation varied significantly between wild and domesticated cowpea populations 373 

(Table 1). The domesticated populations showed consistently higher values for host growth response 374 

to inoculation when the Fix+ strain was present (Fix+ and Coinoculation), whereas wild cowpeas 375 

showed the lowest host growth response values for single inoculation with the Fix+ strain (Table S7). 376 
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In the soil inoculation experiment, there was no significant difference in host growth response 377 

values between wild cowpeas and the domesticated populations (Table 1). There were significant 378 

treatment effects of the Fix+ versus Fix- treatments on nitrogen fixation (δ15N; X2 
(2)

 = 33.22, p = 379 

<0.001; Table 1). Under the Fix+ treatment, wild cowpeas had δ15N values of 833.81+ 54.23, 380 

Genepool-1 obtained 641 + 64.21 and Genepool-2 had 643.17 + 62.65, while for the Fix- the values 381 

were higher in all cases (i.e., less nitrogen fixation), consistent with a significant reduction of 382 

nitrogen fixation with the Fix- strain (wild, 1052.33+ 71.15; Genepool-1, 960.38+ 62.67; Genepool-2 383 

,887.94 + 53.73; Table S7). 384 

Four-population analysis – There were no significant differences among the wild cowpeas 385 

from northern and southern Africa for nodule number, investment into symbiosis, and 386 

nodule biomass (Tables 1, S8). Among the traits measured we only found differences in the 387 

mean nodule biomass values for the soil community, where nodule size for the Wild-1 388 

population was significantly different from both domesticated populations (t16 = -3.4, p= 0.01; 389 

Table S9) but it was not different among domesticated and Wild-2. Previously reported 390 

differences and patterns among wild and domesticated populations were consistent with the three-391 

population analysis for all other traits (Figs S3, S4). 392 

 393 

Heritability and potential for selection 394 

A significant genetic variation component was observed for some of the symbiosis traits 395 

tested (Table 2). Moderate levels of heritability were observed for the number of nodules (h2 = 0.32 396 

 0.12) and host growth response (h2 =0.23  0.09), however heritability was very low for investment 397 

(h2 = 0.09  0.07). 398 

Heritability for host growth and the number of nodules varied among inoculation treatments 399 

(Table 2) and between the wild cowpeas and domesticated populations (Table 3). For host growth 400 

the expression of additive genetic variation (2
a) was highest in the Fix+ treatment (2

 = 9.428, p < 401 

0.01, Table S1), while for the number of nodules it was highest under the co-inoculation treatment 402 

(2 = 24.20, p < 0.01, Table S1), suggesting that selection could shape both nodulation and symbiotic 403 

benefits. Higher 2
a value for host growth response was observed in the wild cowpeas, relative to 404 

the domesticated Genepools (2=19.62, p < 0.01, Tables 3, S1), while for the number of nodules 2
a 405 
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was higher in the domesticated Genepools (2 = 41.69, p < 0.01, Tables 3, S1), suggesting that 406 

domestication has affected these symbiosis traits in opposing ways. The expression of 2
a in host 407 

growth and number of nodules also varied among cowpea populations depending on the inoculation 408 

treatment imposed (2=51.37, p < 0.01; 2 = 70.74, p < 0.01; Tables 4, S1). The additive genetic 409 

variation in investment was very low, the addition of the relationship matrix did not provide an 410 

increase of the model fit so components of variation were estimated without it. The expression of 411 


2

a in investment differed among the Fix+, Fix- and co-inoculation treatments (X2
 = 10.15; p = 0.04, 412 

Table S1), with the highest variance observed in the Fix- (Table 4; Figure 3). No differences in 2
a 413 

were observed among populations and there was no dependency of these values on the inoculation 414 

treatment imposed (X2= 2.37; p =0.31, Table S1).  415 

Genetic correlations among the different symbiosis traits, including host growth response, 416 

nodule number, and investment, were positive in all cases (Table 5). However, the only significant 417 

correlation was observed between investment and the nodule number (rA =0.98, p < 0.01), 418 

indicating that selection on either of these traits can influence the other. Cowpea population was an 419 

important predictor of the genetic correlation between traits (X2
12 = 35.25, p < 0.01), indicating that 420 

correlated responses to selection would vary among these populations. 421 

 422 

Post-infection sanctions against ineffective rhizobia  423 

There was no evidence that post-infection sanctions varied among the cowpea genotypes. 424 

The Fix+ strain dominated the nodules of co-inoculated plants in all tested host genotypes, and in 425 

every case the Fix+ strain was found in nodules more often than expected by chance (p < 0.001). Of 426 

the 11,586 colonies scored from nodules, 98.94% belonged to the Fix+ strain while 1.06% were 427 

identified as Fix-. The Fix- strain was only recovered from two wild and one domesticated genotypes 428 

and only four nodules were found to be co-infected by both strains.  429 

 430 

Discussion  431 

We uncovered little evidence for degradation of symbiosis associated with cowpea 432 

domestication, despite marked differences among the cowpea populations. The decline in genetic 433 

diversity during the early stages of cowpea domestication was modest (~6%; Table S2) in comparison 434 
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to wheat and soybean, both of which show a substantial degradation in symbiosis traits (Kiers et al. 435 

2007; Hetrick et al. 1992). In the case of wheat, diversity loss from wild Triticum tauschii to landrace 436 

cultivars was approximately three times more severe than cowpea (Reif et al. 2005). For soybean, 437 

bottlenecks reduced genetic diversity to over 50% compared to G. soja, but this was mainly due to 438 

an unusually low level of genetic diversity in the wild progenitor followed by a loss of diversity during 439 

the domestication bottleneck (Guo et al. 2010; Hyten et al. 2006). Conversely, we found that the 440 

populations of domesticated cowpeas (i.e., Genepools-1, 2) exhibit more genetic divergence among 441 

them than either one of them compared to the wild cowpeas, suggesting that these two populations 442 

recently diverged from their wild progenitors, and supporting the presence of substantial genetic 443 

diversity that breeding could capitalize upon (Muñoz-Amatriaín et al. 2017). For the symbiosis traits 444 

we examined, heritability values were relatively low and varied with the rhizobial strain treatments. 445 

However, the presence of higher additive genetic variation in host growth and nodule number when 446 

cowpeas were exposed to an effective nitrogen-fixing strain indicate that there is breeding potential 447 

that could improve these symbiosis traits when a beneficial strain is present in the soil, thus 448 

enhancing the hosts capacity to regulate rhizobia.  449 

Importantly, the reduction in genome-wide genetic variation among domesticated cowpea 450 

did not always indicate a loss of additive genetic variance of symbiosis traits. While for host growth 451 

response, the component of additive genetic variance was modestly reduced in domesticated 452 

relative to wild cowpeas, for the number of nodules, additive genetic variance was substantially 453 

increased in the domesticated populations (Table 3). These differences in the components of genetic 454 

variation among traits can be due to different effects of selection in aboveground and belowground 455 

traits during domestication. Fisher (1930) predicted that as beneficial alleles become fixed due to 456 

selection, the additive genetic variance will become depleted. Traits that are intensely selected 457 

during domestication have experienced reductions in additive variation, such as root length in rice 458 

(Karavolias et al. 2020) and multiple fitness-related traits in maize (Yang et al. 2019). Therefore, it is 459 

possible that the reduction in additive variation in host growth response in the domesticated 460 

cowpeas is due to its positive correlation with an aboveground trait such as seed number or yield 461 

(Kyei-Boahen et al. 2017), which was selected for during domestication (Lo et al. 2018; Lonardi et al. 462 

2019). Conversely, the number of nodules might have been affected by diversifying belowground 463 

selective processes during domestication as the different landraces likely encountered a broad 464 

diversity of rhizobia across different growing regions in Africa (Pule-Meulenberg et al. 2010). 465 

Agricultural settings in Africa, where the cowpea landraces were developed, usually involve growing 466 
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crops without external nutrient, microbial, or water inputs (Singh et al. 1997), and thus the cowpea 467 

landraces have been exposed to varied edaphic and environmental conditions across the continent. 468 

This edaphic diversity might have maintained additive variation in nodulation.  469 

The trait of sanctions appeared to be unaffected during cowpea domestication, even though 470 

it was found to be degraded in more-domesticated soybeans (Kiers et al. 2007). We uncovered very 471 

little variation for sanctions capacity across all subcultured nodules from tested cowpeas, suggesting 472 

that this trait could be fixed in some legume species (Wendlandt et al. 2019). Conversely, we 473 

uncovered evidence for an evolutionary shift towards enhanced host investment into symbiosis in 474 

domesticated cowpea populations, indicated by a significant increase in the proportion of host 475 

biomass that supports nodules. Across domesticated populations we saw higher investment into 476 

symbiosis in the Fix+ and co-inoculation treatments compared to the Fix-. Although this result might 477 

imply that increased investment was favored under artificial selection for yield, there was very low 478 

heritability for the investment trait, and we found no significant genetic correlation between host 479 

investment and host growth benefit from symbiosis.  These results do not allow us to conclude that 480 

this trait shift in domesticated cowpeas improves benefits from symbiosis, but it might suggest that 481 

multiple traits are correlated with an increase in host biomass. Of all the traits that we examined, 482 

one which is consistent with the degradation hypothesis in domesticated populations is mean 483 

nodule size. For wild cowpeas, mean nodule size was larger in the presence of the Fix+ strain relative 484 

to Fix-, a trend that was not seen for domesticated populations. These data might suggest that the 485 

wild cowpeas have the capacity to adaptively regulate nodule size dependent on the amount of 486 

nitrogen fixed in each nodule, as has been shown for other legumes (Quides et al. 2017; Regus et al. 487 

2015).  488 

We uncovered no significant variation between the northern and southern populations of 489 

wild cowpeas in terms of symbiosis traits, despite their separate geographic distributions. Among 490 

the genotypes that consistently formed nodules, our results showed that wild cowpeas gained low 491 

or no growth benefit from both the Fix+ and Fix- strains compared to the benefits gained by the 492 

domesticated genotypes in single inoculations (Fig. 2). Similar patterns were uncovered with the 493 

δ15N data for all populations (Table S7). No such differences were uncovered in the soil inoculation 494 

experiment, where soil slurries were used from a site where diverse cowpea lines were cultivated 495 

over multiple generations (Huynh et al., 2018). These results suggest that the domesticated 496 

genotypes have experienced relaxation of symbiont specificity, relative to the wild cowpeas that 497 

appear unable to gain benefits from USDA110. The number of nodules was also consistently smaller 498 
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for wild cowpeas compared to domesticated populations in both settings. A potential target for the 499 

genetic basis of these changes are SNPs that link both domestication and nodulin genes (Muñoz-500 

Amatriaín et al. 2017), as well as genomic regions associated with increased organ size during 501 

domestication, since they could prove to be fundamental in host regulation and response to 502 

symbionts (Lo et al. 2018; Lonardi et al. 2019). Further testing of nodulation and host growth with 503 

African Bradyrhizobium strains could provide fundamental insights into the evolution of host-504 

symbiont specificity during the domestication process. 505 

Low heritability values for some symbiosis traits suggest that environmental variation can 506 

play an important role in their phenotypic expression. For instance, low additive variation was 507 

observed for host investment, suggesting that the relative biomass a plant invests into nodules 508 

depends largely on the environmental context of the host plant. However, the higher additive 509 

genetic variance observed in host growth and the number of nodules indicates that there is potential 510 

to select on these traits to enhance benefits from symbiosis. Efforts to improve nitrogen fixation in 511 

legumes are focused largely on choosing beneficial rhizobia, but there is a need to provide a 512 

coordinated plant-bacteria breeding strategy (Sinclair and Nogueira 2018). Among the cowpeas 513 

studied here, Genepool-2 contains the best potential for further breeding, given that a higher 514 

heritability was observed among these cowpea genotypes for both the number of nodules and host 515 

growth. The fact that all of these genotypes are interfertile with modern domesticated cowpeas 516 

suggests that both wild cowpeas and landraces could be used as potential resources for 517 

introgression with domesticated varieties to increase genetic variation in breeding programs. 518 

Further screening for these traits could potentially allow growers to select for accessions that can 519 

improve their growth in the presence of compatible rhizobia.  520 

Our work was focused on examining the early steps of domestication, and thus the 521 

conclusions that we can draw might not apply to modern cowpea cultivars. Given the basic 522 

conditions in which the cowpea landraces are propagated (Singh et al. 1997), they have probably not 523 

been exposed to heavy chemical fertilization or further reductions in genetic diversity, common in 524 

later stages of domestication with geographical expansion and intense breeding of the crop (Gaut et 525 

al. 2018), all factors that might be important in the disruption of symbiosis traits (Porter and Sachs 526 

2020). Thus, it could be that degradation of symbiosis traits occurs more commonly with intense 527 

artificial selection during the latter stages of domestication, as was observed in soybeans (Kiers et al. 528 

2007) and wheat (Hetrick et al. 1992). Symbiosis traits could be largely protected or even potentially 529 

enhanced under simple agricultural conditions that lack chemical fertilization, in particular if 530 
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aboveground traits such as growth and yield are correlated with the capacity to gain limiting 531 

nutrients from local microbiota. Our results also highlight potential breeding strategies that take 532 

symbiosis traits into account – such as nodulation counts and growth effects of inoculation – that 533 

could improve productivity of cowpea in the future by shedding light on how domestication has 534 

shaped symbiosis and how this knowledge can be used for sustainable crop improvement strategies.  535 

 536 

Figure 1. Patterns of genetic differentiation in wild and domesticated Cowpeas. (a) Principal component analysis (PCA) 537 

showing patterns of genetic clustering among domesticated and wild cowpea genotypes sampled by Huynh et al. (2013) 538 

and from which twenty genotypes were selected for analysis of symbiosis traits (dots with labels; see SI for details). Purple 539 

and green dots represent accessions that were defined as representatives of Genepool-1 and 2, respectively based on low 540 

admixture (<0.01; Huynh et al. 2013), and the remainder genotypes are gray. (b) Unrooted neighbor-joining tree of the 541 

twenty selected cowpea genotypes, indicating that Genepool-1 and 2 taxa are each most closely related to wild cowpeas 542 
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from the same geographic region. (c-d) Ancestry proportions of cowpea accessions derived from sparse non-negative 543 

matrix factorization algorithm (sNMF) using the cowpea genotypes and SNP genotyping sampled by Huynh et al. 2013 (see 544 

SI; Fig S1). Results are presented when k=3 to indicate the three populations presented by Huynh et al. 2013 (c) and for the 545 

twenty selected genotypes (d). Most landraces maintain substantial ancestry from wild cowpeas (i.e., admixed cowpeas), 546 

while landraces from either of the two defined Genepools exhibit less evidence of admixture with wild cowpeas. 547 

 548 

 549 



 

 

 

This article is protected by copyright. All rights reserved. 

 

Wild Genepool-2Genepool-1

 N
o

d
u

le
 N

u
m

b
e

r 
(s

q
rt

)

0.00

5.00

10.00

12.50

0.00

5.00

10.00

2.50

7.50

0.00

0.01

0.02

0.03

In
v

e
s

tm
e

n
t

0.03

0.02

0.01

0.00

0.04

L
o

g
 H

o
s

t 
G

ro
w

th

 R
e

s
p

o
n

s
e

 (
%

)

1.00

2.00

3.00

4.00

5.00

0.00

2.00

4.00

6.00

a)

b)

c)

Fix+ Co-inoculation Fix-

b
b

b

b

a

a

a

a
a

a

b
b

Wild Genepool-2Genepool-1

Soil Community

ab
b

a

b b

a a

b b

Wild Genepool-1 Genepool-2

a

a

a

Wild Genepool-1 Genepool-2

Wild Genepool-1 Genepool-2 Wild Genepool-1 Genepool-2

a

b b

ab b
a a

a
a a a a

 550 

Figure 2. Least square means of symbiosis trait values of wild and domesticated cowpeas under different inoculation 551 
treatments. (a) Least-square mean of transformed nodule counts, (b) Least-square mean of Investment and (c) Least-552 
square mean of the logarithm of Host Growth Response (%). The black bars represent plants that were inoculated with the 553 
Fix+ strain, blue bars represent plants Co-inoculated with the Fix+ and the Fix- strains and light green bars represent plants 554 
inoculated with the Fix- strain. Dark blue bars represent a separate experiment testing soil community inoculum. Standard 555 
errors above and below the means are indicated for each group. Connecting letters reports statistically significant 556 
differences among Treatments within each of the Genepools using Tukey’s post-hoc tests. 557 
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 558 

Figure 3. Additive genetic variation of symbiosis traits in domesticated and wild cowpeas in response to three different 559 

inoculation treatments. Symbiosis traits included (a) host growth response ((b) investment and (c) number of nodules. 560 

Dots represent the breeding values for each genotype estimated from the best linear unbiased prediction (BLUPs) from a 561 

model where the genetic variance was allowed to differ among populations and rhizobial treatments. Colors indicate the 562 

population of each genotype. The dispersion among the dots represent genetic variation in the trait (VA).  563 

Tables 564 

Table 1. LMMs testing the differences on plant traits among wild and landrace populations of cowpea genotypes 565 

inoculated with USDAI-110 ARS (Fix+) and USDA110 L1(Fix-), co-inoculated with an equal proportion of both and a soil 566 

community experiment. 567 

 568 
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  Sqrt Number of Nodules Log10 Dry Nodule 

Biomass 

Investment Host Growth 

Response (%) 

δ15N Mean Nodule 

Weight 

Single Inoculation                             

 Fixed effects 
2
 df p 

2
 p 

2
 p 

2
 p 

2
 df p 

2
 P 

Harvest Day 14.31 1 0.0001 65.39 <0.001*** 1.32 0.2493 69.7 <0.001*** 8.45 1 0.003** 5.32 0.021* 

Population 38.1 2 <0.001*** 32.75 <0.001*** 60.06 <0.001*** 8.18 0.016* 3.57 2 0.16 6.83 0.03* 

Treatment 133.18 2 <0.001*** 52.26 <0.001*** 61.29 <0.001*** 14.3 <0.001*** 33.22 1 <0.001*** 0.17 0.67 

Population x 

Treatment 

60.8 4 <0.001*** 13.88 0.007** 5.81 0.21 9.81 0.04* 0.92 2 0.63 10.32 0.005** 

Random effects               

Line 117.73 1 <0.001*** 24.95 <0.001*** 13.57 0.0002*** 46.8 <0.001*** 6.22 1 0.012* 0.29 0.5842 

Treatment:Line 29.33 5 <0.001*** NA NA NA NA NA NA NA NA NA NA NA 

Soil Community                             

 Fixed effects 
2
 Df p 

2
 p 

2
 p 

2
 p 

2
 Df p 

2
 p 

Harvest Day 0.072 1 0.7873 9.31 0.002** 11.55 0.0006*** 17.2 <0.001*** NA NA NA 6.07 0.01* 

Population 56.21 2 <0.001*** 24.14 <0.001*** 3.88 0.14 0.05 0.97 NA NA NA 8.78 0.01* 

Random effects                             

Line 9.82 1 0.001** 1.84 0.173 0 0.99 4.07 0.04* NA NA NA 19.5 <0.001*** 

 569 

 570 

 571 

 572 

 573 

Table 2. Components of variation and estimates of heritability for three symbiosis traits under the three inoculation 574 
treatments.  575 

 576 

Trait Treatment VA SE VP SE h
2
 SE 

Host growth Response Fix+ 0.20 0.04 0.88 0.15 0.24 0.04 

 Co-inoculation 0.09 0.03 0.50 0.09 0.19 0.05 
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 Fix- 0.03 0.02 0.34 0.08 0.09 0.05 

         

Number of Nodules Fix+ 15.94 5.93 77.90 25.78 0.32 0.04 

 Co-inoculation 22.10 8.12 57.92 16.79 0.38 0.04 

 Fix- 4.77 2.07 42.61 11.58 0.11 0.04 

         

        

Investment Fix+ 0.0000 0.0001 0.0010 0.0002 0.00 0.12 

 Co-inoculation 0.0000 0.0001 0.0010 0.0002 0.00 0.11 

 Fix- 0.0007 0.0004 0.0019 0.0004 0.37 0.13 

                

 577 

 578 

 579 

Table 3. Components of variation and estimates of heritability for three symbiosis traits for the three populations tested. 580 

 581 

 582 

Trait Population VA SE VP SE h
2
 SE 

Host Growth Response Genepool-1 0.06 0.05 0.33 0.06 0.18 0.12 

 

Genepool-2  0.1 0.07 0.42 0.09 0.23 0.13 

 

Wild 0.15 0.11 0.86 0.16 0.17 0.11 

                

Number of Nodules Genepool-1 3.12 2.55 21.04 3.74 0.15 0.11 

 

Genepool-2 6.3 4.34 17.32 4.64 0.36 0.16 

 

Wild 0.14 0.12 1.38 0.23 0.1 0.08 

                

        Investment Genepool-1 0.0001 0.0001 0.0015 0.0003 0.03 0.07 
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Genepool-2 0.0004 0.0002 0.0014 0.0003 0.25 0.12 

 

Wild 0.0001 0.0001 0.0013 0.0002 0.06 0.08 

                

 583 

 584 

Table 4. Components of variation and estimates of heritability observed for the three populations under the different 585 
inoculation treatments for two symbiosis traits where an interaction among population and treatment were found.  586 

 587 

 588 

Trait Population Treatment VA SE VP SE h
2
 SE 

Host growth Response Genepool-1 Fix+ 0.05 0.07 0.77 0.18 0.07 0.08 

 

Genepool-1 Co-inoculation 0.16 0.13 0.82 0.23 0.19 0.11 

 

Genepool-1 Fix- 0.10 0.10 0.91 0.23 0.11 0.09 

 

Genepool-2 Fix+ 0.26 0.21 1.36 0.41 0.19 0.11 

 

Genepool-2 Co-inoculation 0.01 0.06 1.03 0.23 0.01 0.06 

 

Genepool-2 Fix- 0.05 0.05 0.72 0.18 0.07 0.06 

 

Wild Fix+ 1.29 0.90 3.88 1.63 0.33 0.11 

 

Wild Co-inoculation 0.37 0.27 2.12 0.89 0.17 0.06 

 

Wild Fix- 0.09 0.13 1.62 0.59 0.05 0.06 

         Number of Nodules  Genepool-1 Fix+ 5.00 3.85 13.28 4.41 0.38 0.20 

 

Genepool-1 Co-inoculation 9.25 6.24 17.57 6.58 0.53 0.19 

 

Genepool-1 Fix- 6.72 4.53 11.63 4.70 0.58 0.18 

 

Genepool-2 Fix+ 8.55 5.59 14.03 5.75 0.61 0.17 

 

Genepool-2 Co-inoculation 8.53 5.86 17.82 6.30 0.48 0.19 

 

Genepool-2 Fix- 3.32 2.79 11.58 3.45 0.29 0.19 

 

Wild Fix+ 0.00 0.06 1.05 0.29 0.00 0.06 

 

Wild Co-inoculation 0.09 0.14 1.39 0.37 0.09 0.14 

  Wild Fix- 0.45 0.35 1.15 0.40 0.39 0.21 
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Table 5. Genetic correlations between traits estimated across treatments and populations 589 

 590 

  

   Multi-trait model rA SE p 

Investment – Host Growth Response 0.24 0.19 0.59 

Nodule Number – Host Growth Response 0.43 0.24 0.08 

Investment - Nodule Number 0.98 0.03 < 0.01 

 591 

 592 
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