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Evolutionary origins and diversification of
proteobacterial mutualists

Joel L. Sachs1,3,†, Ryan G. Skophammer1,†, Nidhanjali Bansal1

and Jason E. Stajich2,3

1Department of Biology, 2Department of Plant Pathology and Microbiology, and 3Institute for Integrative
Genome Biology, University of California, Riverside, CA 92521, USA

Mutualistic bacteria infect most eukaryotic species in nearly every biome.

Nonetheless, two dilemmas remain unresolved about bacterial–eukaryote

mutualisms: how do mutualist phenotypes originate in bacterial lineages and

to what degree do mutualists traits drive or hinder bacterial diversification?

Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobac-

teria to investigate the origins and evolutionary diversification of mutualistic

bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a

range of 34–39 independent origins of mutualist phenotypes in Proteobacteria,

revealing the surprising frequency with which host-beneficial traits have evolved

in this phylum. We found proteobacterial mutualists to be more often derived

from parasitic than from free-living ancestors, consistent with the untested para-

digm that bacterial mutualists most often evolve from pathogens. Strikingly, we

inferred that mutualists exhibit a negative net diversification rate (speciation

minus extinction), which suggests that mutualism evolves primarily via tran-

sitions from other states rather than diversification within mutualist taxa.

Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a

paucity of reversals to parasitism or to free-living status. This evolutionary con-

servatism of mutualism is contrary to long-standing theory, which predicts

that selection should often favour mutants in microbial mutualist populations

that exploit or abandon more slowly evolving eukaryotic hosts.
1. Introduction
An astonishing diversity of beneficial bacteria infect eukaryotes [1–3], but little is

known about how these mutualists evolve [2]. Perhaps the biggest dilemma is to

explain how mutualist phenotypes originate in bacterial lineages, and in particular

whether mutualists evolve primarily from parasitic or free-living ancestors [1,4].

A classic paradigm from studies of pathogen virulence posits that beneficial bacteria

evolve recurrently from parasitic ancestors [4–7]. Yet, these models predict that viru-

lence is attenuated by vertical transmission among hosts [4,5], whereas biologists

now believe that most beneficial bacteria are transmitted infectiously [1]. In contrast

to virulence theory, comparative genomic analyses have suggested that differential

patterns of gene loss in mutualists and parasites should hinder transitions between

these states, leading researchers to propose that bacterial mutualism and parasitism

most often represent independent origins of host association [8,9].

There is also intense debate about the evolutionary stability of mutualism

[1,5,10–15], and in particular the degree to which mutualist phenotypes drive or

hinder lineage diversification [2,16–19]. Early population-based models predicted

that mutualist taxa are more vulnerable to extinction than other lifestyles [17,18]

but few empirical data have supported these ideas [19]. In parallel, models of inter-

specific cooperation predict that bacteria—which often evolve rapidly—generate

mutants that exploit or abandon their more slowly evolving eukaryotic hosts

[14,15], thus predicting that mutualists commonly transition into other lifestyles

[1,10]. Converse to these ideas, new theoretical frameworks argue that eukaryotic

hosts must evolve mechanisms to control the interaction before stable mutualism

can emerge [11–13], and thus that the mutualist lifestyle engenders evolutionary

stability [2,13,16]. Despite the incredible prevalence and importance of mutualistic
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bacteria in all aspects of eukaryote biology, the pathways to and

the evolutionary diversification of such mutualisms are poorly

understood [1,10].

Here, we investigated the evolution of mutualism in one of

the most ecologically diverse and species-rich phyla of bacteria,

the Proteobacteria. Proteobacteria encompass mutualists and

pathogens of eukaryotes and diverse free-living species [20].

Phylogenetic relationships of 405 taxa (383 Proteobacteria and

22 outgroup taxa) were inferred using 47 protein markers

mined from available whole-genome datasets [21,22]. We only

sampled taxa with whole-genome sequences because this

allows for robust phylogenetic reconstruction, and because

these taxa are more often characterized with detailed pheno-

typic data. We used a data-gathering heuristic that incorporates

ambiguous information to categorize host-association status for

each of the bacterial taxa [23]. Proteobacterial taxa were categor-

ized as free-living (no known association with eukaryotes) or

host-associated (inhabitation of eukaryotes) and host-associated

taxa were categorized as mutualist (neutral to beneficial to

hosts), parasite (harmful) or dual lifestyle (evidence of mutual-

ism and parasitism or ambiguous evidence). Host-associated

taxa with no evidence for fitness effects on hosts (i.e. ‘commen-

sals’) and dual-lifestyle taxa were independently analysed as

mutualists and parasites to examine the effects of ambiguous

categorization. We confirmed that each of our traits exhibit sig-

nificant phylogenetic signal [24] and inferred ancestral host-

association phenotypes using Markov chain Monte Carlo

(MCMC; [25]), maximum likelihood (ML; [25]) and maximum

parsimony (MP; [26]) on a posterior sample of Bayesian trees.

We used a multi-state speciation and extinction model

(MuSSE) to infer trait-dependent extinction and speciation

rates, as well as transition rates among states that take

trait-dependent diversification rate into account [27]. MuSSE

evaluates the potentially confounding effects of taxon sampling

by inferring diversification and transition parameters under mul-

tiple schemes of extant taxon sampling. In order to test

hypotheses about the drivers of mutualist origins, we compiled

and analysed additional characteristics of mutualist taxa when-

ever possible, including information about habitat, host type,

mode of transmission among hosts and mutualist services.

Another recent study examined the evolution of mutualist traits

across the Bacterial domain and found many origins of mutual-

ism from both free-living and parasitic ancestors. But it did not

include a quantitative analysis of transitions or their rates, nor

did it provide robust validation of character states [1]. Our data

here provide to our knowledge, the first quantitative analysis of

the origins of proteobacterial mutualists. We demonstrated that

proteobacterial mutualists are most often derived from parasitic

ancestors. We uncovered negative diversification rates within

mutualist taxa, which suggests that mutualism evolves primarily

via transitions from other states. Contrary to the paradigm of

mutualism instability, we found that mutualist taxa only rarely

revert to parasitism or free-living status. Given that ancient evol-

utionary hypotheses are difficult to test empirically and that

biases can be easily introduced into such studies, we provide

extensive validation of our computational analyses.
2. Results
(a) Phylogenetic reconstruction
Our phylogenetic reconstruction (figure 1; electronic supple-

mentary material, S1 and S2) represents an extremely robust
proteobacterial tree, with more than 96% of the nodes on the

consensus reconstruction having greater than or equal to

0.95 posterior support (see the electronic supplementary mate-

rial, S2). The consensus Bayesian tree recovered monophyletic

clades for each of the five proteobacterial classes, with the

exception of Acidithiobacillus ferrooxidans-ATCC 23270 being

placed outside the Gammaproteobacteria, as was previously

found [28,29]. One clade on the tree is probably a result of phylo-

genetic artefact. The obligate intracellular symbionts in the

Gammaproteobacteria—that have small A-T-rich genomes—

are present on long branches that can cause them to incorrectly

comprise a single lineage [28].

(b) Host-association phenotypes and trait evolution
Among the 405 taxa, our information-gathering heuristic cate-

gorized 162 taxa as free-living, 62 as mutualists, 33 as dual

lifestyle and 148 as parasites (see the electronic supplementary

material, S3). In total, 43 taxa exhibited some ambiguity in their

host-association status, because they were labelled as commen-

sal or dual lifestyle. To examine the effect of ambiguity in the

trait assignments, these 43 taxa were lumped into mutualists

or parasites in independent analyses. We confirmed that

host-association phenotypes exhibit significant phylogenetic

signal—a prerequisite for ancestral state reconstruction

(ASR)—by quantifying Pagel’s lambda (l; [24]) for each charac-

ter state classification. We found that the binary traits of host

association, mutualism and parasitism all exhibit significant

phylogenetic signal (ML estimates, l . 0, p , 0.05; electronic

supplementary material, S4).

We compared the fit of eight different evolutionary

models of trait evolution using an ML approach [27,30].

Trait-dependent speciation and extinction rates, and transition

rates among traits were either fixed to be equal or were

allowed to have separate rates for each category. To minimize

the number of parameter estimates, we focused only on transi-

tion types that we sought to test hypotheses about, including

transitions between free-living status and mutualism (F!M,

M! F), and between parasitism and mutualism (P!M,

M! P). Using the Akaike information criterion (AIC), and

pairwise x2 tests, we found no significant difference in fit

between a model in which all parameters were allowed to

vary and a model in which P!M and M! P transitions

were constrained to be equal (see the electronic supplementary

material, S5). Given that we wanted to explicitly test the

hypothesis of a rate asymmetry between mutualism and

parasitism, we chose to use the more complex model [31].

(c) Evolutionary origins of proteobacterial mutualism
The deepest nodes of the tree were inferred to be free-living (see

the electronic supplementary material, S2), consistent with the

Proteobacteria anciently predating their eukaryotic hosts [1].

The most recent common ancestor (MRCA) of all Proteobacteria

was decisively inferred (Bayes factor (BF) . 5; [32]) to be

free-living (BF¼ 6.550), as were the MRCAs of four of five pro-

teobacterial classes (Alphaproteobacteria, BF¼ 7.505; Beta-,

BF¼ 5.228; Gamma-, BF¼ 7.736; Delta-, BF¼ 11.240; Epsilon-

is more ambiguous, BF¼ 1.131). Based on a consensus ASR, we

inferred 38 origins of mutualism from free-living and parasitic

ancestors (table 1).

Strikingly, proteobacterial mutualists were inferred to orig-

inate from parasitic ancestors almost twice as frequently as

from free-living lineages (figure 2). This difference is significant
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Figure 1. Inferred evolutionary history of host-association traits in Proteobacteria. Mutualist traits exhibit diverse and frequent origins in Proteobacteria from both
parasitic and free-living ancestors. Branch colours represent host-associated traits on the tips of the tree and confidently inferred states on ancestral nodes. Inferred
ancestral states were considered confident if both MCMC and ML analyses inferred the same state with BF scores greater than or equal to 2 (309 of 332 internal
nodes). Two taxa are highlighted: the obligate insect endosymbionts (including the genera Buchnera, Blochmannia, Hamiltonella, Riesia, Sodalis and Wigglesworthia)
and the Escherichia – Shigella clade. Both of these taxa were pruned from the tree in some analyses to test whether these densely sampled clades were biasing the
results. A version with taxon labels is included as electronic supplementary material, S1.
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when analysing variation in transition frequencies among

posterior phylogenetic reconstructions, irrespective of statisti-

cal ASR framework (table 1). We also found the same patterns

for differences in origination rates when using a MuSSE [27]

that accounts for each character’s influence on net diversifica-

tion rate. MuSSE estimated that P!M transitions occur more

than 10 times as often as F!M transitions when diversification

rates are held constant (figure 3a; electronic supplementary

material, S6). To corroborate these results, we also conside-

red three-state models (F, M, P) in which dual lifestyle (MP)

and commensal taxa were alternatively recategorized as mutu-

alists or parasites. Irrespective of how the ambiguous taxa were

categorized, we consistently inferred that P!M transitions

occurred more frequently (see the electronic supplementary

material, S7) and at higher rates than F ! M transitions (see

the electronic supplementary material, S6). Finally, given that

uneven or incomplete taxon sampling can bias results about

evolutionary transitions [27], we performed MuSSE under 16
alternate taxon-sampling schemes, varying both estimated

taxon sampling (100%, 10%, 1% and 0.1%) and the inclusion

of two densely sampled taxa; the Escherichia–Shigella clade

and the obligate insect endosymbionts (figure 1). For instance,

one concern is that P!M transitions are common in these

well-studied Gammaproteobacterial taxa, creating a bias. Yet,

when estimated taxon sampling was adjusted or when each of

these clades was individually pruned off the tree, P!M tran-

sitions consistently occurred at higher rates than F!M (see

the electronic supplementary material, S6).

We inferred P!M transitions to be most frequent in

Gammaproteobacteria, including animal-associated bacteria

with diverse mutualist services (18 transitions; electronic sup-

plementary material, S1, S8 and S9). By contrast, F!M

transitions were common in Alpha- and Betaproteobacteria

(six and four transitions, respectively; electronic supplemen-

tary material, S8) dominated by nitrogen-fixing plant

symbionts (10 out of 12 descendent taxa fix nitrogen;

http://rspb.royalsocietypublishing.org/
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Table 1. Frequencies of host-association transitions estimated with different ASR frameworks. (Mean transition frequencies+ standard deviation and minimum,
maximum values are listed for the 723 posterior Bayesian trees (MCMC, ML and consensus) and for the 10 most parsimonious reconstructions of the Bayesian
consensus tree (MP). For transition types, the ancestral and derived host-association phenotypes of each transition type are listed, respectively; host-associated
phenotypes: F, free-living; M, mutualist; MP, dual lifestyle; P, parasite. The MCMC/ML consensus reconstruction optimizes the BF at each node using information
from both the MCMC and ML ASRs.)

ASR frameworks

transition type MCMC ML MCMC/ML consensus MP

F! Ma,b 14.00+ 0.00 (14,14) 12.70+ 0.46 (12,13) 13.00+ 0.00 (13,13) 17+ 0.00 (17,17)

F! P 23.00+ 0.00 (23,23) 22.00+ 0.00 (22,22) 22.00+ 0.00 (22,22) 24+ 0.00 (24,24)

F! MP 1.00+ 0.00 (1,1) 1.00+ 0.00 (1,1) 1.00+ 0.00 (1,1) 1.00+ 0.00 (1,1)

M! F 4.06+ 0.24 (4,5) 4.00+ 0.00 (4,4) 3.06+ 0.24 (3,4) 3.00+ 0.00 (3,3)

M! P 5.00+ 0.00 (5,5) 2.00+ 0.00 (2,2) 2.00+ 0.00 (2,2) 6.3+ 0.48 (6,7)

M! MP 1.00+ 0.00 (1,1) 1.00+ 0.00 (1,1) 1.00+ 0.00 (1,1) 3.7+ 0.48 (3,4)

P! F 6.94+ 0.24 (6,7) 7.00+ 0.00 (7,7) 6.94+ 0.24 (6,7) 2.00+ 0.00 (2,2)

P! Ma,c 23.33+ 1.00 (19,26) 25.52+ 0.79 (25,28) 25.41+ 0.89 (21,26) 17.7+ 0.48 (17,18)

P! MP 26.09+ 0.28 (26,27) 28.00+ 0.00 (28,28) 26.01+ 0.11 (26,27) 25.3+ 0.48 (25,26)

MP! M 4.12+ 0.42 (4,7) 1.00+ 0.00 (1,1) 4.02+ 0.22 (4,6) 0.00+ 0.00 (0,0)

MP! P 1.06+ 0.23 (1,2) 0+ 0.00 (0,0) 1.00+ 0.00 (1,1) 0.00+ 0.00 (0,0)

MP! F 0+ 0.00 (0,0) 0+ 0.00 (0,0) 0+ 0.00 (0,0) 0.00+ 0.00 (0,0)
aP! M is significantly greater than E! M in both MCMC and ML ASRs when analysing variation among posterior trees using a two-tailed t-test (MCMC,
t ¼ 251.6, p , 0.0001; ML, t ¼ 312.3, p , 0.0001) and is also significant among MPRs (t ¼ 11.1, p , 0.0001).
bF! M . M! F (MCMC, t ¼ 1093.9, p , 0.0001; ML, t ¼ 510.1, p , 0.0001; MPRs, t ¼1, p ¼ 0.0).
cP! M . M! P (MCMC, t ¼ 494.3, p , 0.0001; ML, t ¼ 804.0, p , 0.0001; MPRs, t ¼1, p ¼ 0.0).
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Figure 2. Path diagram of transitions in host-association phenotypes reveals
frequent origins of mutualist phenotypes in Proteobacteria, but a paucity of
reversals. Transitions among four proteobacterial host-association phenotypes
are inferred on the pool of 723 posterior Bayesian trees. Transition frequencies
are reported from the consensus ASR (figure 1; see Material and methods).
F, free-living; M, mutualist; MP, dual lifestyle (mutualist and parasite, or
ambiguous); P, parasite. We reconstructed no transitions from dual-lifestyle
to free-living status. Arrow sizes are scaled to the frequency of transitions
between host-association phenotypes.
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electronic supplementary material, S1 and S8). Theoreticians

have predicted that bacterial mutualists only originate

directly from free-living taxa if their ancestors carry traits

that can provide immediate benefits to hosts that outweigh
the initial costs of infection [1,4]. Bacterial nitrogen fixation

fits this prerequisite in most ecological settings. Moreover,

nitrogen fixation traits in proteobacteroa are often encoded

on genomic islands or plasmids, consistent with the hypoth-

esis that horizontal gene transfer (HGT) of host-beneficial

traits represents a rapid route to the origins of novel mutual-

isms and potentially equally rapid loss [1].

Both P!M and F!M transitions occurred most fre-

quently in lineages in which the descendent taxa were only

transmitted horizontally among hosts. Among the 38 origins of

mutualism on the consensus reconstruction (see the electronic

supplementary material, S1), 29 of the transitions exhibited no

evidence of vertical transmission in any of the inclusive taxa

(see the electronic supplementary material, S8). These data

reject the hypothesis that vertical transmission is a key pre-

requisite for transitions from parasitism to mutualism [4] and

reveal a gap in theory to explain the evolutionary origins of

mutualist bacterial traits.
(d) Evolution and diversification of proteobacterial
mutualists

In our analysis of transition frequencies, we found that pro-

teobacterial mutualist clades exhibit an extreme paucity of

reversals to other states. In particular, origins of mutualism

from parasitism occur 25 times on the ASR consensus tree,

but only two reversals to parasitism are inferred (figure 2).

Similarly, we inferred 13 origins of mutualism from free-

living ancestors but only three reversals to free-living

status. In both instances, the difference in origins versus

reversals of mutualism was significant when analysing

http://rspb.royalsocietypublishing.org/
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variation in transition frequencies among posterior phyloge-

netic reconstructions (table 1). Moreover, P!M and F!M

transitions were more frequent than reversals in all sampled

posterior topologies regardless of ASR method. The two

M! P reversals are well supported in the consensus ASR (see

the electronic supplementary material, S1) and appear to be

driven by HGT events; the plant pathogen taxa Pseudomonas syr-
ingae and Agrobacterium spp. have probably evolved from

mutualists via HGT of Type-III secretion systems and other

key virulence loci [33,34]. By contrast, M! F transitions occur

on nodes with ambiguous ASRs (figure 1; electronic supplemen-

tary material, S1 and S2), so we cannot reject the null hypothesis

that no such reversals occurred. To deal with uneven taxon

sampling, two key densely sampled taxa were experimentally

pruned from the tree in some analyses (Escherichia spp., insect

endosymbionts; see Material and methods). Even when these

clades are individually pruned off the tree, P!M and F!M

transitions were still significantly more frequent than reversals,

irrespective of ASR method (table 1). In three-state models (F,

M, P) in which dual lifestyle (MP) and commensal taxa were

alternatively recategorized as M or P, both P!M and F!M

transitions occurred more frequently than reversals irrespective

of how ambiguous taxa were categorized (see the electronic

supplementary material, S7).

Using MuSSE, we infer that mutualist taxa have a negative

net diversification rate, i.e. an extinction rate greater than

speciation rate (figure 3; electronic supplementary material,
S6). This pattern was consistent among almost all taxon-

sampling schemes (e.g. whether or not the Buchnera and Escher-
ichia clades were included and irrespective of estimated extant

taxon sampling; 100%, 10%, 1% and 0.1%). Moreover, mutualist

diversification rate was also inferred to be marginally lower

than the diversification rates of either free-living or parasite

taxa (M , F, p ¼ 0.0638; M , P, p ¼ 0.0516, respectively).

Yet, the latter comparisons were sensitive to taxon sampling

and were significant in only approximately 60% of the sampling

schemes (see the electronic supplementary material, S6),

so these conclusions are preliminary. Finally, classic theory

predicted that mutualists are particularly vulnerable to extinc-

tion [17,18], but MuSSE inferred that both mutualists and

parasites exhibit similarly elevated extinction rates compared

to free-living taxa (figure 3; electronic supplementary material,

S6). We recognize the uncertainty in estimating extinction

rates from phylogenies [30], so we treat this conclusion with

some caution.

We also used MuSSE to examine transition rates between

mutualists and parasites that control for the trait-specific

differences in diversification rate. When we account for vari-

ation in trait-dependent diversification rate, we failed to find

any significant asymmetry in M! P versus P!M (see the

electronic supplementary material, S6) consistent with our

initial model testing using AIC (see the electronic supplemen-

tary material, S5). Hence, even though we consistently found

asymmetric transition frequencies between mutualism and
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parasitism, the asymmetry can be accounted for by the low

diversification rate of mutualists compared with parasitic

proteobacterial lifestyles.
.royalsocietypublishing.org
Proc.R.Soc.B
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3. Discussion
(a) Validation of computational analyses
Hypotheses about ancient evolutionary events can be difficult

to test empirically, hence we must use caution when drawing

conclusions using phylogenetic inference. Our goal is to test

hypotheses about the origins and diversification of mutualism

and our results are both consistent and robust in this regard.

As we describe below, our results are robust to the topological

reconstructions of the tree, statistical ASR frameworks, pheno-

type classification protocols, character-coding schemes and the

taxon sampling. Nonetheless, inferring the states of individual

ancestral nodes on the tree must be treated with some caution,

and we appreciate that some ancestral nodes on the tree do

not always agree with dominant views of bacterial evolution.

Consistent with this caution, two key densely sampled taxa

were experimentally pruned from the tree in some analyses

(Escherichia spp., insect endosymbionts), and tests showed that

removal of these taxa had negligible effects on the overall results.

We vetted all key aspects of our inferential approach.

For the tree reconstruction, we used a Bayesian framework

in which hypothesis testing does not rely on any particular

topology. But nonetheless, our consensus tree is extremely

well supported and topologically matches phylogenies

recently recovered by other investigators [20,28,29]. In terms

of the ASR, we used three different statistical frameworks

to reconstruct ancestral characters (MCMC, ML and MP).

These independent approaches resulted in identical state

reconstructions at more than 90% of nodes (see the electro-

nic supplementary material, S2) and similar patterns of

transition frequencies (table 1). For our categorization of

host-association characters, our protocol placed ambiguous

taxa into separate categories (commensal and dual lifestyle),

which included species that have varying effects on hosts,

context-specific effects or for which the effects on hosts are

poorly understood. Yet, in some cases these taxa might be

more accurately described as mutualists that are only

opportunistically pathogenic (e.g. Klebsiella pneumoniae; [35])

or as parasites that are rarely avirulent (e.g. Anaplasma
centrale; [36]). To deal with ambiguity, both dual-lifestyle

taxa as well as all commensals were recategorized and all

analyses were repeated. Importantly, the transition analysis

remained relatively unchanged in these analyses (see the elec-

tronic supplementary material, S6 and S7). In terms of our

character-coding scheme, the ML and MCMC analyses

using binary coding (to estimate transition frequencies) pro-

duced qualitatively similar results relative to the multi-state

coding in MuSSE ([27]; used to analyse transition rates; elec-

tronic supplementary material, S6). To deal with the potential

biasing effects of incomplete taxon sampling, we ran all tran-

sition rate analyses under 16 different sampling schemes in

which the estimated extant taxon sampling was varied

(100%, 10%, 1% and 0.1%) and two densely sampled clades

were pruned. Finally, although our data suggest that HGT

can drive some important transitions among host-association

lifestyles, these transfers do not undermine our inferences of

ancestral states, because analysis of Pagel’s lambda [24]

inferred significant phylogenetic constraint in each trait.
(b) Diverse and numerous origins of proteobacterial
mutualisms

Our reconstruction of the origins of proteobacterial mutual-

isms exposes a surprising ease with which these bacteria can

evolve beneficial associations with eukaryote hosts. A range

of 34–39 mutualist origins were inferred using a consensus

ASR method, and mutualist associations were found to have

evolved multiple times in all major clades of the Proteobacteria,

except the Deltaproteobacteria. Proteobacterial mutualists

were inferred to originate most frequently from parasites,

in support of the classic paradigm of virulence theory [4–6].

A recent reconstruction of the domain Bacteria found mutual-

ists to be more commonly derived from free-living taxa and

uncovered only 9–10 origins of mutualism within the Proteo-

bacteria [1]. Yet, taxon sampling was much less dense in that

dataset and only parsimony was used to reconstruct ancestral

characters. Nonetheless, both our dataset and the bacterial

study suggest that evolutionary routes to mutualism can

vary widely across different bacterial taxa.

Our transition frequency and rate data support the hypoth-

esis that origins of mutualism from free-living ancestors are

more difficult than transitions from parasitism to mutualism

[4]. Ewald [4] made this prediction with the reasoning that ori-

gins of mutualism from free-living ancestors should require

bacteria to simultaneously evolve to associate with and provide

significant benefits to hosts. Mutualists inferred to descend

from free-living ancestors frequently exhibited host-association

traits gained via HGT (e.g. 12 out of 20 taxa exhibit nitrogen fix-

ation; electronic supplementary material, S8), which is less

common in mutualists descended from parasitic ancestors

(8 out of 43 taxa). Gain of host-association genes through

HGT is probably a common mechanism for mutualist origins

[1], despite the paradigm that these transitions often exhibit

patterns of net gene loss [8,9].

(c) The evolutionary diversification of proteobacterial
mutualists

Classic mutualism models predict evolutionary instability of

mutualist phenotypes, either because mutualists experience

increased extinction risk [10,17–19] or because cheater

mutants can invade mutualist populations and drive tran-

sitions from mutualism to parasitism [14,15]. Yet, our data

are inconsistent with these models. Instead, our analyses

suggest that mutualist traits engender evolutionary stasis, in

the sense that mutualist taxa exhibit little evidence of adap-

tive diversification and show a paucity of transitions to

other lifestyles. A previous analysis of transitions to and

from mutualism in Bacteria found a qualitatively similar pat-

tern, with more origins than reversals of mutualist traits [1].

The topological pattern on our tree suggests how the low

net diversification rate has shaped mutualist taxa, which in

contrast to the other phenotypes, are not inferred in any of

the deeper ancestral nodes on the tree (see the electronic sup-

plementary material, S1 and S2). Concomitant with this

pattern and the negative diversification rate of mutualist

taxa, our dataset suggests that mutualist phenotypes can

only be maintained in the Proteobacteria by recurrent

transitions from other host-association states.

Theoretical [11,12] and empirical research [1,13,16] is shap-

ing a new paradigm for the evolution of bacterial mutualists

[2]. Recent models have posited that eukaryotic–bacterial

http://rspb.royalsocietypublishing.org/
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mutualisms only originate when hosts exhibit mechanisms to

prevent exploitation [11–15]. Mechanisms of host-control can

be diverse and include ‘capture’ of bacterial mutualists via

strict vertical transmission to offspring [1,4] or for horizontally

acquired mutualists, through efficient manipulation of bac-

terial infection and proliferation within host tissues [11–15].

Consistent with this paradigm of stability and control by

hosts, new molecular data often find evidence of overlapping

fitness interests between bacterial mutualists and their hosts

[2,13,16], meaning that there are few if any opportunities for

these bacterial mutualists to exploit the host interaction. Our

data support the paradigm of host control and suggest that

once bacteria evolve to be mutualists, they are unlikely to

undergo transitions into any other lifestyle.
oc.B
281:20132146
4. Material and methods
(a) Taxon selection and trait categorization
Proteobacterial taxa were chosen based upon sequence avail-

ability on the National Center for Biotechnology Information

server (NCBI) as well as genome similarity. Multiple strains

per species were sampled only if they differed in host-association

phenotypes or content of type-III secretion system loci, which

encode key host-associated functions [1,33]. Otherwise, single

strains were chosen per species that exhibited maximal content

of the 47 proteins used for phylogenetic reconstruction. If two

or more strains were identical in phenotype, T3SS content and

marker protein content, one was arbitrarily chosen for analysis.

Outgroup taxa with completely sequenced genomes were sampled

from 12 related eubacterial phyla (Actinobacteria, Bacteroidetes,

Chlamydiae, Chlorobi, Cyanobacteria, Deinococcus-Thermus, Fir-

micutes, Planctomycetes, Spirochaetes, Tenericutes, Thermotogae

and Verrucomicrobia; [20]). Within these phyla, taxa were chosen

to maximize diversity in host-association phenotypes and genome

content for the marker proteins. Candidatus Hodgkinia cicadicola
DSEM and Candidatus Carsonella ruddii PV were pruned from our

dataset to optimize phylogenetic support, because they nested

incorrectly [28] within the outgroup clade in initial phylogenetic

reconstructions (probably because of long branch effects [37,38]).

We used an information-gathering heuristic to collect data on

host-association traits for the Proteobacteria and outgroup taxa.

The heuristic, called a positive test strategy, searches for and auto-

matically accepts affirmative information [23], in this case from the

following set of trusted sources: primary literature that is indexed

in the ‘Web of Knowledge’ (www.webofknowledge.com), the

DOE-JGI sequencing website (http://genome.jgi-psf.org/pro-

grams/bacteria-archaea/index.jsf), the NCBI-Entrez Genome

Projects (http://www.ncbi.nlm.nih.gov/genome) and the High-

quality Automated and from the Manual Annotation of Microbial

Proteomes website (http://hamap.expasy.org/). Within each

source database, the following search terms were used with each

taxon or strain name to search for affirmative information about

the taxon’s status as commensal (avirulent, commensal, epibiont,

no effect), free-living (aquatic, free-living, environment, envi-

ronmental isolate, soil), mutualistic (beneficial, complementary,

fitness enhancing, growth promoting, mutualist, nutrient exchange,

symbiont, symbiotic) or parasitic (causal, causative agent, deleter-

ious, harmful, parasite, parasitic, pathogen, toxic, toxin, virulence,

virulent). All references with any of these terms were read in full

to manually curate all trait assignments.

The positive test heuristic is useful for host-association traits

because it can incorporate mixed sources of information as well

as ambiguous information. Taxa with evidence of free-living

status but no evidence of commensalism, mutualism or parasit-

ism were assigned as free-living. Taxa with any evidence of

commensalism, mutualism or parasitism were assigned as host-
associated. Taxa with evidence only for mutualism or parasitism

were assigned to these categories, and taxa with evidence of both

mutualism and parasitism or both commensalism and parasitism

were categorized as dual lifestyle (see the electronic supplemen-

tary material, S3). Taxa with evidence only of commensalism

were initially categorized as mutualists, because we reasoned

that it is easier to uncover harmful than beneficial effects upon

hosts. However, to examine the effects of ambiguous trait categ-

orizations, two alternate versions of a three-state categorization

were also analysed (free-living, mutualist, parasite). In one ver-

sion, commensal and dual-lifestyle taxa were categorized as

mutualists and in the other they were categorized as parasites.

(b) Phylogenetic reconstruction
Protein sequences for phylogenetic reconstruction were selected

based on conservation and lack of horizontal transfer among

taxa [21,22]. The following genes were selected: dnaG, frr, gcp,

infC, leuS, nusA, pgk, pheS, pyrG, rplA, rplB, rplC, rplD, rplE,

rplF, rplK, rplL, rplM, rplN, rplO, rplP, rplR, rplS, rplT, rplV,

rpmA, rpoA, rpoB, rpsB, rpsC, rpsD, rpsE, rpsG, rpsH, rpsI, rpsJ,
rpsK, rpsL, rpsM, rpsO, rpsQ, rpsS, secY, serS, smpB, tsf and

ychF. Orthologues were identified through complementary

methods. First, we searched for proteins annotated in the

Kyoto Encyclopaedia of Genes and Genomes Orthology data-

base (KEGG; http://www.genome.jp/kegg/ko.html). For

organisms in our study that did not have entries in the entire

KEGG database (e.g. multiple strains of the same species), we

identified orthologues through searches of the NCBI Protein

database. These searches were supplemented with reciprocal

BLASTs, using proteins sequences from closely related organ-

isms as the initial queries. This was intended to distinguish

between multiple annotations of the same gene in an organism

and also to confirm the orthologous relationship of the proteins.

Orthologous sequences were downloaded from the Batch-

Entrez website and aligned using default settings on MUSCLE

[39]. Alignments were concatenated using the BIOPERL script

concat_aln [40] and were trimmed with the program TRIMAl [41]

using the ‘strict’ setting, resulting in a concatenation of 7828

amino acids. Missing proteins were represented by gaps. MCMC

phylogenies were reconstructed with MRBAYES V. 3.1.2 [42] using

a fixed rate model of evolution [43] selected by an MCMC sampler

that explored multiple models. Three MCMC runs of 106 gener-

ations each converged on a stationary distribution (average

standard deviation of split frequencies less than 0.01). One tree

out of 100 for each of the final 24 100 generations (postburn-in)

was sampled in each run and a majority-rules consensus tree

was generated from this pool of 723 trees.

(c) Inference of ancestral state evolution
Both binary and multi-state phenotype-coding regimes were

used to infer ancestral states. The binary coding scheme required

three dichotomous classifications (1, free-living/host-associated;

2, parasite/non-parasite and; 3, mutualist/non-mutualist),

whereas the multi-state coding included either four (e.g. free-

living, dual lifestyle, mutualist and parasite) or three discrete

states (free-living, mutualist and parasite). We used the binary

coding for the ASRs described below, whereas the multi-state

coding was used to estimate trait-dependent diversification and

transition rates in MuSSE [27]. The ultrametric phylogenetic

tree for MuSSE was generated by randomly choosing a full

resolved tree from the sampled posterior distribution of 723

MRBAYES trees and rate smoothing with r8s [44].

Host-association phenotypes were confirmed to exhibit signifi-

cant phylogenetic signal by quantifying Pagel’s l [24] for each trait.

We used the fitDiscrete function in the Geiger [45,46] package in R

to calculate ML values of Pagel’s l on 10 randomly selected post-

burn-in MCMC trees. Likelihood ratio tests were used to compare

http://www.webofknowledge.com
http://genome.jgi-psf.org/programs/bacteria-archaea/index.jsf
http://genome.jgi-psf.org/programs/bacteria-archaea/index.jsf
http://genome.jgi-psf.org/programs/bacteria-archaea/index.jsf
http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
http://hamap.expasy.org/
http://hamap.expasy.org/
http://www.genome.jp/kegg/ko.html
http://www.genome.jp/kegg/ko.html
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http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132146

8

 on November 27, 2013rspb.royalsocietypublishing.orgDownloaded from 
the ML values of l to models with a l value of zero (no phyloge-

netic signal) and models with a l value of one (shared trait values

are proportional to genetic distance).

We used an ML based, model testing approach to examine

whether host-association phenotypes had an impact on diversifi-

cation rates as well as the rates of key transitions. We tested eight

models in which speciation, extinction and transition rates were

either constrained to be equal or were allowed to be independent

among host-association phenotypes. x2-values (ChiSq) and their

significance (Pr-ChiSq) were calculated by performing pairwise

comparisons between the fit of each model to the most complex

model. The most complex model examined had independent

speciation, extinction transition rates for all host-association phe-

notypes (20 parameters; electronic supplementary material, S5).

ASR was performed using MCMC, ML and MP. BAYESTRAITS

[25] was used for MCMC and ML ASRs, which fits continuous-

time Markov models to character data with discrete states and

provides marginal likelihoods of two models for comparison.

For the MP ASR, we used the ‘trace character history’ function

of MESQUITE v. 2.74 [26] and used the ‘most parsimonious recon-

structions’ option to generate a pool of 10 random MPRs. ASR

was performed in a stepwise fashion; nodes reconstructed as

free-living were not examined further, whereas host-associated

nodes were labelled as parasites, mutualists or both (dual life-

style). The MCMC analysis ran for 106 iterations, consisting of

random samples from the pool of 723 trees; the ML analysis com-

puted the likelihood for each tree separately and the mean

marginal likelihood for the MCMC and ML analyses was com-

puted. The likelihood for each inferred ancestral character state

was evaluated at all 4719 nodes present in the 723 posterior

MCMC trees, including 363 nodes present on the consensus

tree. To compare the magnitude of the evidence for one state

versus another at each node, the fossil command in BAYESTRAITS

[25] was used to fix nodes at a particular state, one node-trait-

state combination at a time. Each node was evaluated for both

states of each trait, resulting in 28 314 values in both the

MCMC and ML analyses.

A single ASR consensus hypothesis was created for display

and discussion purposes (figures 1 and 2; electronic supplemen-

tary material, S1). On this ASR, character states and nodes were

considered confident if both MCMC and ML analyses inferred

the same state ‘decisively’ [32] (BF � 2). Decisive evidence was

found for 309 of 332 internal nodes in the consensus tree. The

remaining nodes were considered ambiguous and a protocol

was used to generate an optimal ASR hypothesis. If the states

reconstructed by MCMC and ML differed, the test with the

higher magnitude of difference was accepted. For nodes in
which MCMC and ML did not find positive evidence for parasit-

ism or mutualism, we chose the state with the smaller negative

evidence. If significant evidence rejecting one state but not the

other existed for both analyses, then that reconstruction was

chosen. Cases in which significant parasitic nodes also provided

significant evidence for mutualism in one test but not significant

evidence in the other were marked as significant for both states.

To test hypotheses about transition frequencies, two-tailed

t-tests were used to compare different transitions types among

the 723 posterior MCMC trees. To provide complementary

information, MuSSE [27] was used examine trait-dependent

diversification and transition rates. Transition rates estimated

with MuSSE hold diversification rates of each trait as constant.

MuSSE was used to specifically test hypotheses about rela-

tive rates for the different origins of mutualism (P!M versus

F!M) and about bias transition asymmetry between mutual-

ism and parasitism (P!M versus M! P). A random MCMC

tree from the postburn-in dataset was made ultrametric using

penalized likelihood in APE 2.7 [47,48] with arbitrary scaling.

For the MuSSE analyses, ancestral states were constructed

using the multi-state coding. We calculated MuSSE model par-

ameters from the ultrametric ML tree using ML in the software

DIVERSITREE [27]. To be conservative, hypotheses about relative

transition rates were tested under four schemes of estimated

extant taxon sampling (100%, 10%, 1% and 0.1%). We also

attempted to use the multi-state coding to reconstruct transition

frequencies using Multi-state in BAYESTRAITS [25]. However,

consistent with other researchers [49,50] we found that the par-

ameter-rich multi-state models produced inconclusive results in

BAYESTRAITS, so these results were not reported.
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