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Methods S1: Methods and references used for Figure 2 

Overview of the acetylene reduction assay 
The acetylene reduction assay (ARA) was popularized by Hardy et al. (1968) and has become a 
mainstay of research into nitrogen fixation rates in root- and stem-nodulating plants. Briefly, the 
assay harnesses the natural ability of nitrogenase to reduce a variety of substrates, which 
includes protons (to H2), dinitrogen (to ammonia), and acetylene (to ethylene). In atmospheres 
of up to 10% acetylene, nitrogenase preferentially reduces acetylene over other available 
substrates, and nitrogen fixation rates can be approximated from ARA-determined nitrogenase 
activity by dividing the latter by some empirically-determined constant (usually 3-4). 
Nitrogenase activity is not equal to nitrogen fixation rate because, under normal physiological 
conditions, some nitrogenase activity is used to produce H2. Parsons et al. (1992) assumed an 
nitrogenase activity-to-nitrogen fixation ratio of 4:1 and calculated the ARA value that would be 
required to sustain the known growth rate of a Sesbania rostrata seedling of known nitrogen 
content; they found their ARA prediction (293 µmol C2H4 g-1 h-1) closely matched their empirical 
ARA measurements (270-280 µmol C2H4 g-1 h-1), supporting the utility of this assay for 
approximating nitrogen fixation rates. 
 
The acetylene reduction assay has been critiqued because common assay conditions increase 
the resistance of the nodular oxygen diffusion barrier, which artificially reduces nitrogenase 
activity (Minchin et al., 1983, 1986). Problematic assay conditions include disrupting the tissues 
being sampled (i.e., removing shoots from roots or removing nodules from roots) and incubating 
tissues in acetylene for longer than 10 minutes, although this “acetylene-induced decline” in 
nitrogenase activity depends on plant species, inoculum, and assay conditions (Vessey, 1994).  

Literature search 
We extracted measurements of nitrogenase activity from published acetylene reduction assays 
that used either intact plants, nodulated roots or stems, or excised nodules. We used Web of 
Science search terms ‘nitrogenase’ + ’nodule’ and examined publications from January 2013 to 
August 2017. To increase coverage of specific taxa, we also searched tribal or generic names in 
conjunction with the search term “acetylene” and examined publications dating back to 1987. 

Extracting acetylene reduction assay (ARA) data from publications 
We used one ARA value per plant species (or subspecies/cultivar) per publication to account for 
data from the same experiment likely exhibiting more similarity than data from different 
experiments. In studies that published multiple ARA values for the same species (or 
subspecies/cultivars), as when ARA was measured in different treatments or over a growing 
season, we used the highest reported ARA value for the species (or subspecies/cultivar) or the 
value of the control treatment when stressors/manipulations had been applied. When data had 
to be extracted from a figure, we manually measured the height of bars/points and standardized 
to experimental units using the scale bar. Of 199 references uncovered during the literature 
search, we retained 215 data points from 106 references. References were excluded if we found 
that ARA was performed on bacterial cultures (instead of nodules) or if we could not standardize 
the reported ARA units to common units (see below). 

 
Standardizing ARA data to common units 

ARA data were standardized to units of µmol ethylene produced g-1 nodule dry weight (DW) h-1 
to be presented in Figure 2 as specific nitrogenase activity (SNA). When ARA data were originally 



reported per nodule fresh weight (FW), we adjusted to DW by multiplying by 0.25 (assuming 
nodule DW was 25% nodule FW; we found nodule DW varied from 10-35% of nodule FW based 
on studies where nodule DW and FW were presented together). When ARA data were reported 
per plant or per nodule, we adjusted to per g nodule DW using nodule mass data reported in the 
same publication. 

Assigning plant genera to clades 
Plant genera were assigned to one of four clades of root-nodulating plants according to the 
phylogenies in Doyle (2011) and Lewis (2005): 
 
Non-legumes: includes Parasponia and actinorhizal taxa (Rosales, Cucurbitales, and Fagales) 

 Early-diverging legumes: includes MCC clade, dalbergiods (s.l.), and genistoids (s.l.) 
 Warm-season legumes: includes milletiods (s.l.) and Tribe Indigofereae 
 Cool-season legumes: includes robiniods (s.l.) and the IRLC legumes 

Assigning nodule trait values to plant genera 
We assigned each plant genus one of two values for each of four nodule traits, as follows: 

Infection method R = root hair infection, 
intracellular infection 

C = crack entry, 
epidermal infection, 
intercellular infection 

Nodule development D = determinate growth I = indeterminate growth 

Symbiont sequestration F = fixation threads, persistent 
infection threads, N-fixing 
hyphae (for actinorhizal plants) 

S = symbiosomes 

Symbiont differentiation N = nonterminal, reversible, 
nonswollen bacteroids 

T = terminal, irreversible, 
swollen/elongated 
bacteroids, bacteroids 
with reduced viability 

 
We searched the literature for evidence of which trait values occurred in each genus in our 
dataset. Publications used to support trait value assignments are found in Table S1B. In many 
cases we could not find publications supporting specific genera, and so we inferred trait values 
from related taxa (also see Table S1B). Occasionally a genus showed evidence for both trait 
values; these were indicated as ‘mixed’ (M). 

Testing effects of tissue treatment on nitrogenase activity 
For all analyses, specific nitrogenase activity values were log-transformed to improve normality. 
All statistics were performed in JMP Pro 13 (SAS Institute Inc., Cary, NC, USA). 

To address the concern that nitrogenase activity declines after disrupting assayed tissue, we 
categorized each data point with regard to tissue treatment prior to ARA measurement: 
‘nodule’” (n = 80) included nodules excised from roots with or without a portion of the 
subtending root attached, ‘roots or stems’ (n = 79) included nodulated roots (or nodulating 
stems for stem-nodulating species) detached from the rest of the plant, and ‘intact plants’ (n = 
36) included whole plants measured in or out of their growth medium. SNA varied significantly 



by tissue treatment (F2,193 = 3.3992, P = 0.0354), with intact plants tending to have greater 
nitrogenase activity than roots or stems, which tended to have greater nitrogenase activity than 
nodules. Pairwise differences between tissue treatments were not significant, but we confirm 
the general trend that less-disrupted tissues exhibit greater levels of nitrogenase activity. 

Testing effects of acetylene incubation time on nitrogenase activity 
To address the concern that nitrogenase activity declines after exposing tissues to acetylene for 
more than 10 minutes, we assembled data for the amount of time plant tissues were incubated 
in acetylene prior to measuring ethylene production. In several cases, ethylene was measured at 
several time points after acetylene was added and the reported SNA values were not tied to 
specific time points. When multiple incubation times were available for a data point, we chose 
the shortest incubation time. The 180 SNA data points for which we could collect acetylene 
incubation time values ranged from 0.75 minutes to 1140 minutes. There was no significant 
effect of acetylene incubation time on SNA (P = 0.2285), but when the six data points with 
incubation times greater than 240 minutes were excluded, there was a significant negative 
relationship (R2 = 0.052, P = 0.0014). We next binned each data point into acetylene incubation 
times of 0.75-10 minutes (n = 24), 11-30 minutes (n = 68), 31-60 minutes (n = 62), and 61-1440 
minutes (n = 26) and found that SNA varied significantly among incubation time bins (F3,177 = 
9.1479, P < 0.0001). Incubation times of 0-10 minutes had significantly greater SNA than any 
other time bin, which did not differ from each other. Thus, we confirm the trend that 
nitrogenase activity decreases after more than 10 minutes of exposure to acetylene. 

Testing effects of plant clade and nodule traits on nitrogenase activity (Methods S1 Table 1) 
To account for variable numbers of data points within each plant genus (ranging from 1-30; see 
Table S1B), we calculated genus-level SNA means and used this smaller dataset to examine SNA 
variation among plant clades and nodule traits using ANOVA and independent-samples t-tests, 
respectively. 

Using the entire dataset (‘all data;’ 58 genus means from 215 data points), we did not detect 
significant variation in SNA among clades or between alternative trait values for any of the four 
nodule traits we tabulated (infection method, nodule development, symbiont sequestration, or 
symbiont differentiation). Next, we re-calculated genus means using just data points collected 
under more optimal ARA conditions (i.e., from intact plants, or under acetylene incubation times 
of up to 10, 30, or 60 minutes). We repeated our analyses using these filtered datasets and still 
failed to find differences in SNA among clades or nodule types, suggesting that plant evolution 
has not significantly shaped nitrogenase activity. However, these results could also be due to the 
loss of statistical power from the smaller sample sizes in these filtered datasets. We are thus 
cautious in interpreting these negative results too strongly and support future research on this 
important question. 

Testing effects of nodule traits on nitrogenase activity within each plant clade (Methods S1 Table 2) 
For each nodule trait, we examined clades in which each trait value occurred in at least three 
genera (excluding genera marked with ‘M’ or ‘U’) and tested for effects of alternative trait 
values on SNA using an independent-samples t-test. When filtered datasets were used (0.75-10 
minute or 0.75-60 minute acetylene incubations), we found no significant effects of nodule trait 
values on nitrogenase activity within any clade. When the entire dataset was used, we found 
that non-legumes with root hair infection had significantly greater nitrogenase activity than 
nonlegumes with crack infection (Methods S1 Table 2). 



R = root hair infection, C = crack infection, I = indeterminate nodule development, D = determinate nodule development, F = f ixation threads, S = symbiosomes, T = terminal symbiont 
differentiation, N = nonterminal symbiont differentiation 

Methods S1 Table 1. Effects of plant clade and nodule traits on nitrogenase activity using different data subsets. For each embedded table, “n” refers to the 
number of plant genera in each level of each tested factor. 

 Intact plants ONLY 
 

20 genera 
(from 36 data points) 

C2H2 incubation times 0.75-
10 min ONLY 

13 genera 
(from 24 data points) 

C2H2 incubation times 0.75-
30 min ONLY 

34 genera 
(from 92 data points) 

C2H2 incubation times 0.75-
60 min ONLY 

53 genera 
(from 154 data points) 

All Data 
 

58 genera 
(from 215 data points) 

P
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C
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d
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F3,17 = 0.5009, P = 0.6869 

 n Mean 
log10(SNA) 

Non-leg 7 1.46 

Early leg 4 1.56 

Warm leg 6 1.21 

Cool leg 3 0.23 
 

 
F3,10 = 0.3810, P = 0.3810 

 n Mean 
log10(SNA) 

Non-leg 4 2.10 

Early leg 2 3.29 

Warm leg 3 1.73 

Cool leg 4 1.91 
 

 
F3,31 = 0.2650, P = 0.8500 

 n Mean 
log10(SNA) 

Non-leg 9 1.33 

Early leg 7 1.23 
Warm leg 11 1.14 

Cool leg 7 1.43 
 

 
F3,50 = 0.6251, P = 0.6022 

 n Mean 
log10(SNA) 

Non-leg 10 0.93 

Early leg 16 1.38 
Warm leg 18 1.02 

Cool leg 9 0.86 
 

 
F3,55 = 1.5341, P = 0.2162 

 n Mean 
log10(SNA) 

Non-leg 12 0.82 

Early leg 17 1.30 

Warm leg 19 0.83 

Cool leg 10 0.46 
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n
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o
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t = 1.03, P = 0.3205 

 n Mean 
log10(SNA) 

R 12 1.52 

C 5 0.66 
 

 
t = 0.41, P = 0.6893 

 n Mean 
log10(SNA) 

R 9 2.38 

C 2 2.09 
 

 
t = 1.70, P = 0.1005 

 n Mean 
log10(SNA) 

R 22 1.47 

C 9 1.03 
 

 
t = 1.44, P = 0.1557 

 n Mean 
log10(SNA) 

R 33 1.31 

C 16 0.85 
 

 
t = 1.07, P = 0.2907 

 n Mean 
log10(SNA) 

R 34 1.10 

C 18 0.78 
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t = -0.01, P = 0.9892 
 n Mean 

log10(SNA) 

I 13 1.15 

D 6 1.16 
 

 
t = 2.13, P = 0.0594 

 n Mean 
log10(SNA) 

I 7 2.61 

D 5 1.48 
 

 
t = 0.37, P = 0.7116 

 n Mean 
log10(SNA) 

I 21 1.31 

D 12 1.22 
 

 
t = 0.72, P = 0.4721 

 n Mean 
log10(SNA) 

I 34 1.16 

D 18 0.94 
 

 
t = 0.32, P = 0.7490 

 n Mean 
log10(SNA) 

I 39 0.93 

D 18 0.83 
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n
  

t = -0.47, P = 0.6477 
 n Mean 

log10(SNA) 

F 7 1.46 

S 12 1.10 
 

 
t = 0.09, P = 0.9331 

 n Mean 
log10(SNA) 

F 4 2.10 

S 9 2.16 
 

 
t = -0.26, P = 0.7958 

 n Mean 
log10(SNA) 

F 9 1.33 

S 24 1.26 
 

 
t = 0.99, P = 0.3291 

 n Mean 
log10(SNA) 

F 11 0.84 

S 40 1.19 
 

 
t = 0.67, P = 0.5055 

 n Mean 
log10(SNA) 

F 13 0.75 

S 43 0.98 
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t = -1.08, P = 0.2957 

 n Mean 
log10(SNA) 

T 11 0.89 

N 9 1.62 
 

 
t = 0.48, P = 0.6395 

 n Mean 
log10(SNA) 

T 7 2.27 

N 6 1.99 
 

 
t = 1.16, P = 0.2551 

 n Mean 
log10(SNA) 

T 16 1.41 

N 17 1.13 
 

 
t = -1.14, P = 0.2615 

 n Mean 
log10(SNA) 

T 24 0.92 

N 27 1.26 
 

 
t = -1.41, P = 0.1646 

 n Mean 
log10(SNA) 

T 27 0.70 

N 29 1.10 
 



R = root hair infection, C = crack infection, I = indeterminate nodule development, D = determinate nodule development, F = 
fixation threads, S = symbiosomes, T = terminal symbiont differentiation, N = nonterminal symbiont differentiation 

Methods S1 Table 2. Comparison of nitrogenase activity between alternative nodule trait values for 
each main clade of N-fixing plants studied here, using all available data. For each embedded table, “n” 
refers to the number of plant genera with the indicated trait value. When there were no genera having a 
particular trait value, we filled the “mean” field with “NA” (not applicable).  When a particular trait value 
was only found in one genus, preventing a t-test from being performed, we also filled the t-test field 
with NA. 

 All Data 

In
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n
 

m
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h
o
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Clade n Mean 
log10(SNA) 

t-test 

Non-leg R = 5 1.45 t = 2.95 
P = 0.0145 C = 7 0.38 

Early leg R = 8 1.90 t = 1.48 
P = 0.1627 C = 7 1.05 

Warm leg R = 14 0.89 t = -0.16 
P = 0.8773 C = 4 0.99 

Cool leg R = 7 0.37 NA 

C = 0 NA 
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d
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p
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t 

Clade n Mean 
log10(SNA) 

t-test 

Non-leg I = 12 0.82 NA 

D = 0 NA 

Early leg I = 14 1.41 t = 0.79 
P = 0.4404 D = 3 0.79 

Warm leg I = 5 0.64 t = -0.43 
P = 0.6695 D = 14 0.89 

Cool leg I = 8 0.41 NA 

D = 1 0.09 
 

Sy
m

b
io

n
t 

co
m

p
ar

tm
en

ta
liz

at
io

n
 Clade n Mean 

log10(SNA) 
t-test 

Non-leg F = 12 0.82 NA 

S = 0 NA 

Early leg F = 1 -0.08 NA 

S = 14 1.56 

Warm leg F = 0  NA NA 

S = 19 0.83 

Cool leg F = 0 NA NA 
 S = 10 0.46 
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Clade n Mean 
log10(SNA) 

t-test 

Non-leg T = 11 0.90 NA 

N = 1 0.04 

Early leg T = 4 0.76 t = -1.19 
P = 0.2571 N = 11 1.61 

Warm leg T = 5 0.87 t = 0.11 
P = 0.9160 N = 14 0.81 

Cool leg T = 7 0.25 t = -1.27 
P = 0.2408 N = 3 0.93 
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Methods S2: Methods and references used for Figure 3 

Literature search 
Host investment data was measured from published studies containing light or electron 
micrographs. We used Web of Science to find articles published through August 1st, 2017 which 
resulted in a total of 85 articles and 577 data points. We limited our search to the years 2013-
2017 and searched for the topic ‘nodul*’. The search was then refined by ‘*rhizob*’, ‘legum*’, 
‘lupin*’, ‘parasponia’, ‘aeschynomene*’, ‘frankia’, and ‘alder’ individually. We were unable to 
find usable images for parasponia and thus expanded our search by one year to 2012. 

 
Extracting data from literature 

Light and electron micrograph figures were analyzed in ImageJ using the published scale bars. 
Images were excluded if they did not provide scale bars, their resolution was too low, or if the 
infection was not beneficial due to host, symbiont or environment effects. The proportion of the 
nodule infected was calculated using light microscopy images containing whole nodule sections. 
We measured stained plant cells as the infected area and used our best judgement to only 
measure cells in the nitrogen fixation zone. This value was then divided by the entire nodule 
section area to get the proportion of the nodule that is infected. Average area of an infected 
plant cell was calculated as the total area of intact and whole infected cells divided by the total 
number of whole cells in the light microscopy image. Bacteroid density and bacteroids per 
symbiosome were calculated using transmission electron microscopy images. For bacteroid 
density we counted the total number of bacteroids in an image and divided by the area of that 
image. For bacteroids per symbiosome we counted the total number of bacteroids in the image 
and divided by the total number of symbiosomes in the image. 

 
Categorizing data 

Plant genera were assigned to one of four clades of root-nodulating plants according to the 
phylogenies in Doyle (2011) and Lewis (2005): 
 
Non-legumes: includes Parasponia and actinorhizal taxa (Rosales, Cucurbitales, and Fagales) 

 Early-diverging legumes: includes MCC clade, dalbergiods (s.l.), and genistoids (s.l.) 
 Warm-season legumes: includes milletiods (s.l.) and Tribe Indigofereae 
 Cool-season legumes: includes robiniods (s.l.) and the IRLC legumes 

 
We searched the source publications for evidence of terminal bacteroid differentiation (TBD) 
versus non-TBD for each host-symbiont combination which generated usable data (Table S2). 
When bacteroids were swollen, elongated, or had reduced viability after escaping a nodule we 
considered this as TBD. If we were unable to find evidence of TBD in the original paper, we used 
Web of Science to search for evidence of TBD for the species of interest. Most data was 
categorized according to Oono et al. (2010), and in some instances we were unable to find 
evidence of TBD or non-TBD. These data points were left as unknown and excluded from TBD 
versus non-TBD analyses.  

 
Data analysis 

For each measurement taken we calculated the mean values for each genus. These genus-level 
mean values were then used to compare all clades using analysis of variance (ANOVA) with a 
post-hoc Tukey HSD test when applicable. In order to compare the effects of TBD versus non-



 

TBD we used a Student’s t-test on all data in a given measurement. All statistics were performed 
in JMP Pro 13 (SAS Institute Inc., Cary, NC, USA). 
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