New Phytologist Supporting Information

Article title: Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus, but host sanctions are uniform

Authors: Camille E. Wendlandt, John U. Regus, Kelsey A. Gano-Cohen, Amanda C. Hollowell, Kenjiro W. Quides, Jonathan Y. Lyu, Eunice S. Adinata, Joel L. Sachs

Article acceptance date: 05 July 2018

The following Supporting Information is available for this article:

Fig. S1 Host symbiotic efficiency of *A. strigosus* in each treatment
Fig. S2 Regression of rhizobial cells per nodule against nodule area
Fig. S3 Total nodule dry mass and total nodule number of *A. strigosus* in each treatment
Table S1 Collection information for *A. strigosus* host lines
Table S2 Genetic distance matrix of *A. strigosus* host lines at *nrITS* and *CNGC5* loci
Table S3 Statistical model selection
Table S4 Leaf %N and ¹⁵N content of *A. strigosus* in each treatment

Fig. S1 Test of the partner mismatch hypothesis based on host symbiotic efficiency of *A. strigosus* from different populations in (a) unfertilized and (b) fertilized conditions. Symbiotic efficiency was calculated as mg total plant dry mass (roots + shoots) gained from symbiosis per mg total nodule dry mass. Statistics were performed separately for singly-inoculated and co-inoculated plants. Only main effects were significant, and different letters indicate the significant main effects of strain, fertilization, and host population (Table 1). Different letters above strain treatments indicate significant differences among strains; different letters above fertilization treatments indicate significant differences between fertilization treatments. Different letters did not differ from either extreme (i.e., 'ab'). B = BMR (Bodega Marine Reserve), U = UCR (University of California, Riverside), C = Cla (Bernard Field Station of the Claremont Colleges), A = Anz (Anza-Borrego Desert State Park), G = Gri (Griffith Park), Y = Yuc (Burns-Pinyon Ridge Reserve near Yucca Valley). Bars represent +/- 1 SE.

Fig. S2 Regression of rhizobia per nodule against nodule area for individual nodules cultured from *A. strigosus* singly-inoculated with each *Bradyrhizobium* strain, with data pooled among fertilization treatments and host lines. Strains #2, #38, and #18 are denoted by open gray circles, plus signs, and filled black circles, respectively. Regressions are significant for strain #2 and strain #18 but not for strain #38.

Fig. S3 Test of the resource satiation and host variation hypotheses using (a) total nodule dry mass and (b) total nodule number of A. strigosus lines from different populations in unfertilized and fertilized conditions. Statistics were performed separately for singly- and co-inoculated plants. (a) For total nodule dry mass of singly-inoculated plants, different letters above strain treatments indicate significant differences among strain and fertilization treatments (strain x fertilization effect; Table 2; note that the population x strain and the population x fertilization interactions were also significant). (b) For total nodule number of singly-inoculated plants, host populations denoted with daggers formed significantly fewer nodules with strain #2 than strains #38 and #18 (which did not differ) in the indicated fertilization treatment, whereas host populations without daggers did not differ in the number of nodules formed with the three strains in the indicated fertilization treatment (population x strain x fertilization effect; Table 2). (a,b) For co-inoculated plants, different letters indicate the significant main effects of host population and fertilization. Different letters above host populations indicate significant differences among populations; different letters above fertilization treatments indicate significant differences among fertilization treatments. B = BMR (Bodega Marine Reserve), U = UCR (University of California, Riverside), C = Cla (Bernard Field Station of the Claremont Colleges), A = Anz (Anza-Borrego Desert State Park), G = Gri (Griffith Park), Y = Yuc (Burns-Pinyon Ridge Reserve near Yucca Valley). Bars represent +/- 1 SE.

A. strigosus	A striggsus formal name	Collection year	Seed collecti	ction site (dec. deg.)	
host line	A. strigosus formai name	for wild seeds	Lat.	Long.	
Anz03	AcS046.Anz.m01.g1.r03	2011	33.2713	-116.4194	
Anz11	AcS040.Anz.m01.g1.r06	2011	33.27068333	-116.4189333	
BMR04	AcS074.BMR.u01.g1.r04	2011	38.31903333	-123.0642667	
BMR07	AcS004.BMR.u01.g1.r01	2005	38.3193	-123.06365	
Cla06	AcS047.Cla.m01.g1.r03	2011	34.11051667	-117.70845	
Cla10	AcS047.Cla.m01.g1.r07	2011	34.11051667	-117.70845	
Gri01	AcS075.Gri.u01.gwild	2012	34.12244444	-118.2930556	
UCR03	AcS027.UCR.u01.g1.r01	2009	33.9659	-117.3227167	
UCR10	AcS027.UCR.u01.g1.r03	2009	33.9659	-117.3227167	
Yuc02	AcS052.Yuc.m01.g1.r01	2011	34.15315	-116.4751167	
Yuc03	AcS052.Yuc.m01.g1.r02	2011	34.15315	-116.4751167	

Table S1 Collection information for A. strigosus host lines.

Table S2 Estimates of evolutionary divergence between *A. strigosus* lines for *nrITS* (466 nt, top) and *CNGC5* (441 nt, bottom). Positions containing gaps or missing data were deleted. Cell color intensity scales with the number of base substitutions per site between each pair of host lines. We genotyped 2-17 inbred progeny of the wild seed ancestor that defined each plant line, except for Gri01 (wild seed set), for which we genotyped 21 (*nrITS*) or 8 (*CNGC5*) plants grown from wild seeds.

nrITS	Anz03	Anz11	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
Anz03										
Anz11	0.0021									
BMR04	0.0043	0.0065								
BMR07	0.0043	0.0065	0							
Cla06	0.0065	0.0086	0.0022	0.0022						
Cla10	0.0065	0.0086	0.0022	0.0022	0					
Gri01	0.0021	0.0043	0.0022	0.0022	0.0043	0.0043				
UCR03	0.0043	0.0065	0	0	0.0022	0.0022	0.0022			
UCR10	0.0043	0.0065	0	0	0.0022	0.0022	0.0022	0		
Yuc02	0	0.0021	0.0043	0.0043	0.0065	0.0065	0.0021	0.0043	0.0043	
Yuc03	0	0.0021	0.0043	0.0043	0.0065	0.0065	0.0021	0.0043	0.0043	0
CNGC5	Anz03	Anz11	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03	Anz03	Anz11	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11	Anz03 0.0137	Anz11	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04	Anz03 0.0137 0.0373	Anz11 0.0325	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07	Anz03 0.0137 0.0373 0.0373	Anz11 0.0325 0.0325	BMR04	BMR07	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06	Anz03 0.0137 0.0373 0.0373 0.0325	Anz11 0.0325 0.0325 0.0277	BMR04 0 0.0091	BMR07 0.0091	Cla06	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06 Cla10	Anz03 0.0137 0.0373 0.0373 0.0325 0.0325	Anz11 0.0325 0.0325 0.0277 0.0277	BMR04 0 0.0091 0.0091	BMR07 0.0091 0.0091	Cla06 0	Cla10	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06 Cla10 Gri01	Anz03 0.0137 0.0373 0.0373 0.0325 0.0325 0.0349	Anz11 0.0325 0.0325 0.0277 0.0277 0.0301	BMR04 0 0.0091 0.0091 0.0301	BMR07 0.0091 0.0091 0.0301	Cla06 0 0.0254	Cla10 0.0254	Gri01	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06 Cla10 Gri01 UCR03	Anz03 0.0137 0.0373 0.0373 0.0325 0.0325 0.0349 0.0373	Anz11 0.0325 0.0325 0.0277 0.0277 0.0301 0.0325	BMR04 0 0.0091 0.0091 0.0301 0	BMR07 0.0091 0.0091 0.0301 0	Cla06 0 0.0254 0.0091	Cla10 0.0254 0.0091	Gri01 0.0301	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06 Cla10 Gri01 UCR03 UCR10	Anz03 0.0137 0.0373 0.0373 0.0325 0.0325 0.0349 0.0373 0.0373	Anz11 0.0325 0.0325 0.0277 0.0277 0.0301 0.0325 0.0325	BMR04 0 0.0091 0.0091 0.0301 0 0 0	BMR07 0.0091 0.0091 0.0301 0 0 0	Cla06 0 0.0254 0.0091 0.0091	Cla10 0.0254 0.0091 0.0091	Gri01 0.0301 0.0301	UCR03	UCR10	Yuc02
CNGC5 Anz03 Anz11 BMR04 BMR07 Cla06 Cla10 Gri01 UCR03 UCR10 Yuc02	Anz03 0.0137 0.0373 0.0373 0.0325 0.0325 0.0349 0.0373 0.0373 0.0137	Anz11 0.0325 0.0325 0.0277 0.0277 0.0301 0.0325 0.0325 0	BMR04 0 0.0091 0.0091 0.0301 0 0 0 0	BMR07 0.0091 0.0091 0.0301 0 0 0 0	Cla06 0 0.0254 0.0091 0.0091 0.0277	Cla10 0.0254 0.0091 0.0091 0.0277	Gri01 0.0301 0.0301 0.0301	UCR03	UCR10 0.0325	Yuc02

Table S3 Statistical model selection based on AICc (corrected Akaike's Information Criterion) of candidate models with different interaction terms. For each model, we tested all possible interactions among host population (P), strain (S), and fertilization (F) and then incrementally removed nonsignificant (non-bold) interactions. The AICc value of each chosen model (*) presented in Tables 1 and 2 was at least 1.96 units lower than other candidate models. We performed a retrospective power analysis for the highest-order nonsignificant interaction term tested for each response variable (generally the PSF interaction). Retrospective power analysis calculates 'observed power' (OP), which is the chance of detecting a significant effect using the given sample size to test a population with parameters estimated from the sample (i.e., with a true effect size equal to the sample effect size, and residual error variance equal to the model RMSE). We excluded the random effect of block from each model to facilitate the power analysis. A dagger indicates the highest-order nonsignificant interaction effect included in the model, for which OP was calculated.

Model	Interactions included	AICc	†OP				
Single-inoculation							
	Log ₁₀ (Plant relative growth)		0.7998				
	PS , PF, SF , PSF†	119.255					
	PS , PF, SF	58.9152					
	* PS, SF	22.8121					
	Symbiotic efficiency		0.6059				
	PS, PF, SF, PSF†	1136.991					
	PS, PF, SF	1129.95					
	PS, PF	1124.962					
	PS, SF	1126.007					
	PF, SF	1126.236					
	PS	1121.395					
	PF	1121.869					
	SF	1123.463					
	* none	1119.428					
	$Log_{10}(Delta^{15}N + 3)$		0.2285				
	PS†	171.1534					
	* none	24.9019					
	Percent Ndfa		0.3315				
	PS†	251.5754					
	* none	231.189					
	Log ₁₀ (Mean nodule size)		0.5362				
	PS, PF, SF, PSF†	164.1453					
	PS. PF. SF	99.0999					
	* PS, SF	65.87722					
	Log ₁₀ (Total nodule dry mass)		0.6796				
	PS. PF. SF. PSF†	157.8902					
	* PS, PF, SF	95.33293					
	Log ₁₀ (Total nodule number)						
	* PS, PF, SF, PSF	221.708					
Co-ino	culation						
	Log ₁₀ (Plant relative growth)						
	* PF	62.68259					
	Symbiotic efficiency		0.6853				
	* PF†	635.1891					
	none	637.8435					
	Log ₁₀ (Mean nodule size)		0.2341				
	PF†	-26,9304					
	* none	-62.4644					
	Total nodule dry mass		0.5034				
	* PF†	680.2623					
	none	681.5416					
	Log ₁₀ (Total nodule number)		0.1531				
	PF+	-12 4138	0.1001				
	* none	-48 6068					
	none	10.0000					

		Tissue %N by	weight (SE)	%N derived from fixation (SE)			
Fertilization, Host	Uninoculated	Strain #2	Strain #38	Strain #18	Strain #2	Strain #38	Strain #18
Unfertilized							
Anz	0.65 (0.05)	0.60 (.)	3.95 (0.25)	5.25 (0.15)			
BMR	0.55 (0.05)	0.50 (0.0)	3.6 (0.20)	4.7 (1.0)			
Cla	0.60 (0.0)	0.70 (.)	3.65 (1.05)	4.75 (0.15)			
Gri	0.55 (0.05)	0.65 (0.15)	2.95 (0.25)	3.85 (0.15)			
UCR	0.55 (0.05)	0.60 (0.0)	2.9 (.)	5.4 (0.3)			
Yuc	0.60 (0.0)	0.65 (0.05)	4.3 (0.10)	4.35 (0.45)			
Fertilized							
Anz	0.85 (0.05)	1.1 (.)	3.0 (0.5)	3.9 (1.0)	-0.43 (1.01)	54.80 (14.77)	83.73 (6.41)
BMR	1.2 (0.2)	1.45 (0.15)	3.55 (0.25)	3.25 (0.05)	-3.67 (2.26)	75.58 (9.89)	81.55 (1.54)
Cla	1.15 (0.15)	1.25 (0.15)	2.8 (0.5)	4.6 (0.8)	0.76 (1.85)	73.56 (1.83)	88.20 (1.43)
Gri	0.9 (0.1)	0.75 (0.15)	1.65 (0.05)	3.15 (0.45)	5.19 (2.71)	71.14 (5.91)	76.79 (5.94)
UCR	1.7 (0.7)	1.7 (0.2)	3.75 (0.55)	4.05 (0.25)	2.01 (.)	62.81 (.)	83.00 (7.52)
Yuc	1.1 (0.0)	1.0 (0.2)	3.85 (0.15)	3.55 (0.35)	0.22 (1.35)	74.48 (0.56)	82.32 (0.98)

Table S4 Nitrogen content of *A. strigosus* during single-inoculations with *Bradyrhizobium*. BMR = Bodega Marine Reserve, UCR = University of California, Riverside, Cla = Bernard Field Station of the Claremont Colleges, Anz = Anza-Borrego Desert State Park, Gri = Griffith Park, Yuc = Burns-Pinyon Ridge Reserve near Yucca Valley.

Table S5 Mean total plant (root + shoot) dry mass of *A. strigosus* plants from different populations within each fertilization and *Bradyrhizobium* strain treatment. BMR = Bodega Marine Reserve, UCR = University of California, Riverside, Cla = Bernard Field Station of the Claremont Colleges, Anz = Anza-Borrego Desert State Park, Gri = Griffith Park, Yuc = Burns-Pinyon Ridge Reserve near Yucca Valley.

		Single-Inoculatio	Co-Inoculation Plant Mass, mg (SE)			
Fertilization, Host	Uninoculated	Strain #2	Strain #38	Strain #18	Uninoculated	Co-Inoculated
Unfertilized						
Anz	10.4 (1.3)	11.8 (1.3)	71.3 (6.5)	130.8 (8.8)	15.4 (1.6)	133.2 (9.6)
BMR	6.3 (0.5)	6.0 (0.7)	29.5 (5.6)	86.7 (5.0)	7.6 (0.8)	102.7 (13.6)
Cla	5.4 (0.5)	3.9 (0.4)	50.3 (7.0)	108.7 (13.6)	7.7 (0.7)	107.3 (11.1)
Gri	13.2 (0.9)	11.5 (1.3)	57.6 (14.9)	145.2 (18.5)	19.8 (1.5)	190.8 (11.6)
UCR	7.2 (1.0)	5.0 (0.6)	33.8 (7.0)	83.4 (5.5)	7.5 (0.7)	118.9 (9.7)
Yuc	18.5 (2.7)	15.5 (2.4)	99.1 (9.9)	128.1 (16.4)	40.7 (12.8)	170.7 (21.9)
Fertilized						
Anz	119.0 (10.3)	111.7 (9.7)	208.6 (26.1)	275.1 (13.4)	124.3 (10.2)	301.2 (15.6)
BMR	92.8 (10.7)	82.0 (15.4)	180.6 (17.4)	212.1 (32.0)	105.0 (9.2)	245.4 (17.8)
Cla	91.6 (7.5)	90.6 (7.0)	171.3 (19.8)	240.9 (14.4)	130.7 (12.5)	238.7 (16.2)
Gri	172.7 (13.6)	161.6 (12.4)	207.2 (25.7)	208.8 (16.1)	196.8 (12.7)	341.3 (34.7)
UCR	83.2 (17.5)	61.9 (13.9)	151.3 (17.8)	176.4 (25.8)	106.2 (10.8)	249.8 (13.4)
Yuc	164.6 (10.3)	146.4 (8.9)	262.9 (20.5)	316.3 (23.3)	177.8 (6.4)	336.2 (14.2)