Peer reviewed publications by year:
(click on titles to download PDFs)

 




2023
  • 65 Effective rhizobia enhance legume growth during subsequent drought despite water costs associated with nitrogen fixation. Schwab, S.T., Quides, K.Q., Wendlandt, C.E., Trinh, J., Sung, M., Cardenas, P., Torres, M., Santiago, L.S., Larios, L., Sachs, J.L., 2023 Plant & Soil IN PRESS. [PDF]
  • 64 Competitive interference among rhizobia reduces benefit to hosts. Rahman, A., Nadon, C., Perez, I.A., Farsamin, W.F., Lampe, M.T., Le,. T.E., Torres-Martinez, L.T., Weisberg, A.J., Chang, J.H., Sachs, J.L., 2023 Current Biology. 33. 2988-3001. [PDF]
  • 63 Lotus japonicus regulates root nodulation and nitrogen fixation dependent on the molecular form of nitrogen fertilizer. Ortiz-Barbosa, G.S., Torres-Martinez, L.T., Rothschild, J., Sachs, J.L., 2023 Plant & Soil. 483; 533-545  [PDF]
  • 62 Live soil inocula, not host population or domestication status, is the predominant driver of growth benefits to cowpea. Manci, M., Mercado, O.G., Camantigue, R.X., Nguyen, T., Rothschild, J., Khairi, F., Neal, S., Farsamin, W.F., Lampe, M.T., Perez, I.A., Le, T.H., Ortiz-Barbosa, G.S., Torres-Martinez, L.T., Sachs, J.L., 2023 Plant & Soil. 482; 585-600 [PDF]


2022

  • 61 Dynamic interactions between mega symbiosis ICEs and bacterial chromosomes maintain genome architecture Weisberg, A.J., Sachs, J.L., Chang, J.H., 2022 Genome Biology & Evolution. 14:6, 1-8. [PDF]
  • 60 Pangenome evolution reconciles robustness and instability of rhizobial symbiosis. Weisberg, A.J., Rahman, A., Backus, D., Tyavanagimatt, P., Chang, J.H., Sachs,J.L. 2022 mBIO 13:3, 1-16 [PDF]
  • 59 Symbiotic organs: the nexus of host-microbe evolution. Fronk, D.C. & Sachs, J.L.2022  Trends in Ecology & Evolution. 37:7, 599-610 [PDF] [Press]
  • 58 Wild legumes maintain beneficial soil rhizobia populations despite decades of nitrogen deposition. Wendlandt, C.E., Gano-Cohen, K.A., Stokes, P.J.N., Jonnala, B., Zomorrodian, A., Al-Moussawi, K., Sachs, J.L.,  2022  Oecologia  198:419-430. [PDF]
  • 57 No disruption of rhizobial symbiosis during early stages of cowpea domestication. Ortiz-Barbosa, G., Torres-Martinez, L., Manci, A., Neal, S., Soubra, T. Khairi, F., Trinh, J., Cardenas, P. Sachs, J.L.,  2022  Evolution   76-3, 496-511. [PDF]
2021
  • 56 Experimental evolution of rhizobia can enhance growth benefits to novel hosts K.W. Quides, A.J. Weisberg, J. Trinh, F. Salaheldine, P. Cardenas, H-H. Lee, R. Jariwala, J.H. Chang, J.L. Sachs 2021  Proceedings of the Royal Society of London B. 288: 20210812  [PDF]
  • 55 Evolution of specialization in a plant-microbial mutualism is explained by the oscillation theory of speciation.   Torres-Martinez, L., Porter, S.S., Wendlandt, C.E., Purcell, J., Ortiz-Barbosa, G.S., Rothschild, J., Lampe, M., Farsamin, W., Le, T., Weisberg, A.J., Chang, J.H., J.L. Sachs. 2021  Evolution  75-5, 1070-1086. [PDF]
  • 54 Dysregulation of host control causes interspecific conflict over host investment into symbiotic organs.   K.W. Quides, F. Salaheldine, R. Jariwala, J.L. Sachs. 2021  Evolution 75-5, 1189-1200. [PDF]

2020
  • 53 Polyploid plants obtain greater fitness benefits from a nutrient acquisition mutualism.   N.J. Forrester, M. Rebolleda-Gomez, J.L. Sachs, T.L. Ashman. 2020  New Phytologist. 16574 [PDF]
  • 52 Agriculture and the disruption of plant-microbial symbiosis.   S.S. Porter & J.L. Sachs. 2020  Trends in Ecology & Evolution. 35 (5): 426-439  [PDF] [UCR Media]
  • 51 Recurrent mutualism breakdown events in a legume rhizobia metapopulation.   K.A. Gano-Cohen, C.E. Wendlandt, K. Al Moussawi, P.J. Stokes, K.W. Quides, A.J. Weisberg, J.H. Chang & J.L. Sachs. 2020  Proceedings of the Royal Society of London B. 287: 20192549. [PDF] [Press]
  • 50  The emergence of microbiome centers.  J.B.H. Martiny, K.L. Whiteson, B.J.M. Bohannon, L.A. David, N.A. Hynson, M. McFall-Ngai, J.F. Rawls, T.M. Schmidt, Z. Abdo, M.J. Blaser, S. Bordenstein, C. Brechot, C.T. Bull, P. Dorrenstein, J.A. Eisen, F. Garcia-Pichel, J. Gilbert, K.S. Hofmockel, M.L. Holtz, R.Knight, D.B. Mark Welch, D. McDonald, B. Methe, N. J. Mouncey, N.T. Mueller, C.A. Pfister, L. Proctor, & J.L. Sachs. 2020  Nature Microbiology. 5:2-3 [PDF]
2019
  • 49 Interspecific conflict and the evolution of ineffective rhizobia.   K.A. Gano-Cohen, C.E. Wendlandt, P.J. Stokes, M.A. Blanton, K.W. Quides, A. Zomorrodian, E. Adinata, J.L. Sachs. 2019  Ecology Letters. 22:914-924 [PDF] [Media]
  • 48  Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus but sanctions are uniform.   C.E. Wendlandt, J.U. Regus, K.A. Gano-Cohen,  A.C. Hollowell, K.W. Quides, J.Y. Lyu, E. Adinata, J.L. Sachs. 2019  New Phytologist. 221:446-458 [PDF] [SI] [Media]

2018
  • 47  Legumes versus rhizobia: a model for ongoing conflict in symbiosis.   J.L. Sachs, K.W. Quides, C.E. Wendlandt. 2018  New Phytologist. I219: 1199–1206 [PDF] Supplemental Data [Table S1], [Table S2], [Methods S1,S2]
  • 46  Fitness variation among host species and the paradox of ineffective rhizobia.   V.J. Pahua, P.J.N. Stokes, A.C. Hollowell, J.U. Regus, K.A. Gano-Cohen, C.E. Wendlandt, K.W. Quides, J. Y. Lyu, J.L. Sachs. 2018  Journal of Evolutionary Biology 31: 599-610 [PDF] Supplemental Data [S1, S2, S3, S4, Raw data]
  • 45  Symbiotic nitrogen fixation by rhizobia - the roots of a success story.    C. Masson-Boivin, J.L. Sachs. 2018  Current Opinion in Plant Biology  44:7-17 [PDF]
2017
  • 44  Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation. K.W. Quides, G.M. Stomackin, H.Lee, J.H. Chang, J.L. Sachs. 2017  PLoS One  e0185568  [PDF]
  • 43  Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. J.U. Regus, K.W. Quides, M.R. O'Neill, R. Suzuki, E.A. Savory, J.H. Chang, J.L. Sachs. 2017  American Journal of Botany  104 (9):1-14 [PDF]
  • 42  Nitrogen deposition decreases the benefits of symbiosis in a native legume. J.U. Regus, C.E. Wendlandt, R. M. Bantay, K.A. Gano-Cohen, N. J. Gleason, A. C. Hollowell, M. R. O'Neill, K. K. Shahin, J.L. Sachs. 2017  Plant and Soil 414:159-170  [PDF] [ESM_1] [ESM_2] [ESM_3] [ESM_4]
2016

  • 41  Non-nodulating Bradyrhizobium spp. modulate the benefits of the legume-rhizobium mutualism. K.A. Gano-Cohen, P. Stokes, M.A. Blanton, C.E. Wendlandt, A.C. Hollowell, J.U. Regus, D. Kim, S. Patel, V. J. Pahua, J.L. Sachs. 2016.  Applied and Environmental Microbiology. 82: 5259-5268 [PDF]
  • 40  Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities.     A.C. Hollowell, J.U. Regus, D. Turissini, K.A. Gano, R. Bantay, A. Bernardo, D. Moore, J. Pham, J.L. Sachs. 2016.  Proceedings of the Royal Society of London. 283: 20160496 [PDF] [Supplemental Data]  [Press]
  • 39  Epidemic spread of symbiotic and non–symbiotic Bradyrhizobium genotypes across California.       A.C. Hollowell, J.U. Regus, K.A. Gano, R. Bantay, D. Centeno, J. Pham, J.Y. Lyu, D. Moore, A. Bernardo, G. Lopez, A. Patil, S. Patel, Y. Lii, J.L. Sachs. 2016  Microbial Ecology, 71 (3) 700-710 [PDF] [Supplemental Data 1] [Supplemental Data 2]

2015
  • 38  Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism.   E.I. Jones, M.E. Afkhami, E. Akcay, J.L. Bronstein, R. Bshary, M.E. Frederickson, K.D. Heath, J. Hoeksema, J H. Ness, S. Pankey, S.S. Porter, J.L. Sachs, K. Scharnagl, M.L. Friesen2015Ecology Letters [PDF]  doi:10.1111/ele.12507
  • 37  Exploitation of mutualisms.  J.L. Sachs . 2015  in: Bronstein, J., ed.  Mutualism, Oxford University Press., Oxford. [Reprints upon request]
  • 36  Engineering microbiomes to improve plant and animal health.   U.G. Mueller &. J.L. Sachs. 2015  Trends in Microbiology. [PDF]  http://dx.doi.org/10.1016/j.tim.2015.07.009
  • 35  Lotus hosts delimit the mutualism-parasitism continuum of BradyrhizobiumRegus, J. U., K.A. Gano,  Holllowell, A.C.,  V. Sofish, J.L. Sachs . 2015  Journal of Evolutionary Biology. 28, 447-458 [PDF]
  • 34  Native California soils are selective reservoirs for multidrug resistant bacteria.  Hollowell, A.C., K.A. Gano, G. Lopez, K. Shahin, J. U. Regus, N. Gleason, S. Greater, V. Pahua, J.L. Sachs. 2015  Environmental Microbiology Reports.   7(3), 442-449 [PDF]


2014

    • 33  Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts.  Ehinger, M., Mohr, T. J., Starcevich, J. B., Sachs, J.L., Porter, S. S., Simms, E. L. 2014 BMC Ecology. 14:8

       [PDF]

    • 32  Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization.  Regus, J. U., Gano, K. A., Hollowell, A. C., Sachs, J. L. 2014 Proceedings of the Royal Society of London. 281, 20132587

       [PDF]

    • 31  Evolutionary origins and diversification of proteobacterial mutualists. 

      Sachs, J. L., 

      Skophammer, R.G., Bansal, N., Stajich, J. E.  2014

       

      Proceedings of the Royal Society of London.

      281, 20132146 [PDF] [Supplemental Data]



    2013

    • 30  Biological soil crust communities differ in key ecological functions. 

      Pietrasiak, N, Regus, J. U.,  Johansen, J. R., Lam, D., Sachs, J. L., 

      Santiago, L. S. 2013

       Soil Biology and Biochemistry 65:168-171 [PDF]

    • 29  The legume-rhizobium symbiosisSachs, J. L. Gano, K. A., Hollowell, A. C., Regus, J. U. 2013 Oxford Bibliographies in Ecology [PDF]
    • 28  Mutualistic coevolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum.  Kimbrel, J. A., Thomas, W. J., Jiang, Y., Creason, A. L., Thireault, C. A. Sachs, J. L., Chang, J. H.  2013 PLoS Pathogens 9: 2, e1003204 [PDF]
    • 27  Origins, evolution and breakdown of bacterial symbioses. Sachs, J. L.  2013. Encyclopedia of Biodiversity 2nd Edition, Edited by S. A. Levin [PDF]

    2012

    • 26   The origins of cooperative bacterial communities.  Sachs, J. L.,  and Hollowell, A. C. 2012. mBIO e00099-12 [PDF]

    2011

    • 25   Evolutionary instability of symbiotic function in Bradyrhizobium.  Sachs, J. L., Russell, J. E. and Hollowell, A. C. 2011. PLoS One 6:11:e26370 [PDF]
    • 24  Microbially-mediated  Plant Functional Traits. Friesen, M., Porter, S., Stark, S. & von Wettberg, Sachs, J. L., E., Martinez-Romero, E. 2011. Annual Review of Ecology Evolution and Systematics. 43: 23-46. [PDF]
    • 23  Evolutionary transitions in bacterial symbiosis. Sachs, J.L., Skophammer, R.G., and Regus, J.U. 2011. Proceedings of the National Academy of Sciences USA. 108:10800-10807 [PDF] [Supplemental materials]
    • 22  New paradigms for the evolution of beneficial infections. Sachs, J.L., Essenberg, C. and Turcotte, M. M. 2011. Trends in Ecology and Evolution. 26: 202-209. [PDF]
    • 21  Inclusive theory and eusociality. Abbot, P. et al. 2011 (135 authors). Nature 466:1057  [PDF]

    2010

    • 20 Host control over infection and proliferation of a cheater symbiont.  Sachs, J.L., Russell, J. E., Lii, Y. E., Black, K. C., Lopez, G., and Patil, A. S. 2010. Journal of Evolutionary Biology 23:1919-1927. [PDF]
    • 19 Symbiont genomics; Our new tangled bank.  Medina, M. and Sachs, J.L. 2010. Genomics 95:129-137. [PDF]
    • 18 Origins of cheating and loss of symbiosis in wild Bradyrhizobium. Sachs, J.L., Ehinger, E. O., & Simms, E. L. 2010.  Journal of Evolutionary Biology 23:1075-1089. [PDF]

    2009

    • 17   In situ phylogenetic structure and diversity of wild Bradyrhizobium communities Sachs, J.L., Kembel, S.W., Lau, A.H., and Simms, E.L.  2009. Applied and Environmental Microbiology 75: 4727-4735. [PDF] [Supplemental Materials]


    2008

    • 16  The origins of uncooperative rhizobia.  Sachs, J.L. and Simms, E.L.  2008. Oikos 117: 961-966.
      [PDF]
    • 15  Resolving the first steps to multicellularity. Sachs, J.L. 2008. Trends in Ecology and Evolution. 23:245-248.
      [PDF]

    2007

    • 14 The evolution of cooperative breeding; is there cheating? Sachs, J.L. and Rubenstein, D. R. 2007. Behavioral Processes 76:131-137. [PDF]
    • 13 The evolution of colonial breeding in birds: A test of hypotheses with the red-necked grebe. Sachs, J.L., Hughes, C.R., Nuechterlein, G.L., and Buitron, D. 2007. The Auk 124:628-642. [PDF]                            
    • 12 The nature of human culture. Sachs, J.L.  2007. Book Review of ‘The Origin and Evolution of Cultures’ 2005 Robert Boyd and Peter J. Richerson, Oxford University Press, New York, U.S.A. Quarterly Review of Biology 82:183-184. [PDF]

    2006

    • 11  Pathways to mutualism breakdown. Sachs, J.L., and Simms, E.L. 2006. Trends in Ecology and Evolution 21:585-592. [PDF]
    • 10  Cooperation within and among species. Sachs, J.L. 2006. Journal of Evolutionary Biology 19:1415-1418. [PDF]
    • 9  A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Sachs, J. L. and Wilcox, T.P. 2006. Proceedings of the Royal Society of London. B. 273:425-429. [PDF]
    • 8  An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction.                       Simms, E. L., Taylor, D. L., Povich, J., Shefferson, R. P., Sachs, J. L., Urbina, M., and Tauszick, Y. 2006. Proceedings of the Royal Society of London. B. 273:77-81. [PDF]   
    • 7  A clash of biology and culture. Sachs, J.L.  2006 Book Review of ‘Techno-cultural Evolution, Cycles of Creation and Conflict.’ William McDonald Wallace, Potomac Books, Dulles, Virginia, U.S.A. Quarterly Review of Biology 81:425-426. [PDF]

    2005

    • 6   Experimental evolution of conflict mediation between genomes.  Sachs, J.L. and Bull, J.J. 2005. Proceedings of the National Academy of Sciences USA 102:390-395. [PDF]  [Press]
    • 5   A biohistory of ascendance and decline. Sachs, J.L.  2005. Book Review of ‘The Biology of Civilisation, Understanding Human Culture As a Force In Nature.’ 2004 Stephen Boyden, University of New South Wales Press, Sydney. Quarterly Review of Biology 80:507-508. [PDF]


    1999-2004

    • 4 The Evolution of Cooperation. Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. 2004., Quarterly Review of Biology 79:135-160. [PDF]
    • 3   The evolving field of cooperation. 2003. Dahlem workshop report. Peter Hammerstein, Ed. Dahlem University Press, Cambridge. Quarterly Review of Biology 79:458-459. [PDF]
    • 2  Red-necked Grebes become semi-colonial when prime nesting habitat is available. Nuechterlein, G.L., Buitron, D., Sachs, J.L. and Hughes, C.R. 2003.. Condor. 105: 80-94. [PDF] 
    • 1  Characterization of microsatellite loci for red-necked grebes Podiceps grisegena. Sachs, J.L., Hughes, C. R. 1999. Molecular Ecology. 8, 687-688.  Sachs, J.L., Hughes, C. R. 1999. Molecular Ecology. 8, 687-688. [PDF]